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Abstract

In recent years numerical methods have been widely used to effectively resolve complex flow features of aerodynamics

flows with meshes that are reasonable for today’s computers. High-order numerical methods were used mainly in direct

numerical simulations and aeroacoustics. For many aeronautical applications, accurate computation of vortex-

dominated flows is important because the vorticity in the flow field and the wake of swept wings at an incidence and

rotor blades largely determines the distribution of loading. The main deficiency of widely available, second-order

accurate methods for the accurate computation of these flows is the numerical diffusion of vorticity to unacceptable

levels. Application of high-order accurate, low-diffusion numerical methods can significantly alleviate this deficiency of

traditional second order methods. Furthermore, higher-order space discretizations have the potential to improve

detached eddy simulation predictions of separated flows with significant unsteadiness. Recently developed high-order

accurate finite-difference, finite-volume, and finite-element methods are reviewed. These methods can be used as an

attractive alternative of traditional low-order central and upwind computational fluid dynamics methods for improved

predictions of vortical and other complex, separated, unsteady flows. The main features of these methods are

summarized, from a practical user’s point of view, their applicability and relative strength is indicated, and examples

from recent applications are presented to illustrate their performance on selected problems.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper, we explore applications of high-order

methods in aerodynamics. High-order methods typically

have at least third-order spatial accuracy. Traditionally,

second-order accurate numerical methods are often

preferred in practical aerodynamic calculations because

of their simplicity and robustness. High-order accurate

methods are often perceived as less robust, costly to run,

and complicated to understand and code. As a result,

there are very few working computational fluid dy-

namics (CFD) codes that use higher-order accurate

schemes for production numerical simulations of com-

pressible flow. This is especially true for codes designed

to compute steady flows. We will attempt to dispel this

negative impression about high-order methods.

Before presenting the essential details of high-order

methods, we point out that in many practical aero-

dynamic problems, the solution structures are so

complicated and their time evolution is so long, that it

is impossible to obtain an acceptable solution with

today’s computing speeds using high-grid density and

low-order methods. These problems often involve

regions of complicated but smooth flow structures, such

as vortices interacting with each other or with shear

layers, and regions that contain both shocks and

complex smooth structures. Some examples of these

flows are briefly discussed in the following paragraphs.

Vortical flow fields are especially challenging for the

low-order numerical methods that are typically found in

current Euler and Navier–Stokes flow solvers. The main

cause for this deficiency is that these vortical flow

features deform and dissipate prematurely due to

excessive numerical diffusion in the solution algorithms.

It is well recognized that low-order CFD algorithms

require extremely fine grid resolution to accurately

convect and preserve the strength of vortical flow fields.

This fine grid resolution requirement leads to extremely

large computational problems that cannot be solved on

even the largest parallel computer architectures.

It is straightforward to demonstrate the power of

high-order numerical methods by examining the numer-

ical approximation of a smooth function on a regular

grid. For a second-order accurate numerical scheme, the

error in the functional approximation is proportional to

h2, where h the mesh size Dx. For an nth-order accurate

numerical scheme, the error in the functional approx-
imation is proportional to hn. If we cut the grid spacing

in half, the error in the second-order scheme reduces by a

factor of 4 and the error in the fourth-order scheme

reduces by a factor of 16. Provided that the computa-

tional requirements for the second- and fourth-order

schemes are similar, the fourth-order scheme is clearly

more efficient. Efficiency improvements are even greater

for higher-order approximations. A demonstration of

the superior performance of high-order, low-dissipative,

centered schemes compared to lower-order more dis-

sipative TVD schemes in preserving vorticity [1] is shown

in Fig. 1. The conversion of a two-dimensional isentropic

vortex is carried out for long time with the numerical

solution of the inviscid compressible flow equations on a

Cartesian mesh. At the absence of physical viscosity, the

loss in vortex strength due to the numerical diffusion of

the scheme is evident. For three-dimensional computa-

tions, grid refinement in all three directions, which is

necessary for better resolution of vortical structures that

are isotropic, becomes very expensive computationally.

Therefore, application of high-order schemes is expected

to significantly decrease computing cost.

To better demonstrate the potential of higher-order

methods make the following assumptions: (1) The error

in the solution is Oðhp
Þ where h is the mesh length and p

is the order of accuracy. (2) The number of intervals N i

in the grid, or elements for a finite-element method, is

related to the cell size by N i ¼ Oðh�d
Þ, where d is the

spatial dimension of the problem. (3) Higher-order of

accuracy is achieved by increasing the stencil, or the

number of unknowns per element, Ns ¼ Oðpd Þ. Thus the

total number of operations or unknowns, N, scales as

N ¼ N iNs ¼ Oððp=hÞd Þ. (4) The operation count, W,

required to solve the discrete problem scales as

W ¼ OðNwÞ, where w is the complexity of the discretiza-

tion method. (5) The total time required for the

numerical solution is T ¼ W=F , where 1=F is the time

for a single operation, which depends on the processor

speed. These assumptions lead to the conclusion that the

computing time, T, required to achieve a specific error

tolerance E scales as

T ¼ Oððp=E1=pÞ
wd=F Þ

or taking the logarithm

log T � wd �
1

p
log E þ log p

� �
� log F .
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Fig. 1. Stationary vortex: comparison of the various orders of TVD and ACM methods with the exact solution, illustrated by density

profiles at the centerline y ¼ 0, at t ¼ 50 and 100 for a 401� 81 grid (k ¼ 0:05).
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For stringent accuracy requirements (E51), it is

expected that the term log E dominates the log p terms.

Therefore, the computing time will depend exponentially

on the order of accuracy, p, the complexity of the

method, w, and the grid resolution d. The above

reasoning demonstrates that, from a practical point of

view, it pays off to improve the order of accuracy

provided that the operation count does increase

dramatically. Furthermore, from the first equation it is

evident that small changes of the ratio w=p can reduce

computing time, which scales only inversely by the

processor speed F.

The most widely used flow solvers for aerospace

applications are based on the solution of the Reynolds-

averaged Navier–Stokes (RANS) equations. These

RANS methods have recently benefited from improved

performance of workstations, supercomputers, and

parallel processors. Hardware improvements combined

with advances in areas such as grid generation and more

computationally efficient solution algorithms made

RANS a tool that often complements wind tunnel.

RANS flow solvers have proven useful for airloads

prediction, examination of detailed and gross flow

features, as well as engineering design. The primary

limitation of RANS is the inability to predict turbulent,

separated flow. Turbulence models used in RANS,

model the entire spectrum of turbulence and they are

unable to accurately predict phenomena dominated by

turbulent eddies of massively separated flows. The

deficiency of RANS to predict turbulent separated flow

combined with the unphysical diffusion of vorticity by

the numerical scheme in flow regions away from the
wall, where the grid density is small, is responsible for

inaccuracies of the computed flow field.

Attempts to overcome these deficiencies of RANS

methods to accurately compute turbulent separated flow

have led to the development of large eddy simulation

(LES) [2–7], and more recently the detached eddy

simulation (DES) approaches [8–10]. Both of these

techniques, fully resolve the three-dimensional vortical

structures and turbulent motions in detached flow

regions. In addition, LES methods also resolve certain

range of the small-scale turbulent flow structures in the

attached or separated flow boundary layers. DES

methods, on the other hand, model the attached flow

regions with RANS techniques. As a result, the

resolution requirements of DES are significantly lower

than LES for the attached boundary layers, where the

RANS turbulence model is used. In the separated flow

field, however, the resolution requirements for DES are

comparable to those for LES calculations. Like the

RANS, LES and DES can also benefit from the

application of high-order numerical algorithms to better

resolve separated flow regions. Most of the high-order

numerical methods that we will discuss in this paper are

therefore expected to have applications to RANS, LES

and DES flow solvers.

In particular, high-resolution requirements that are

encountered in typical LES of complex flows can be met

with the application of high-order numerical methods.

For LES of flows in simple domains, the resolution

problem is solved with the use of the highly accurate

spectral methods [11,12]. Spectral methods are not,

however, easy to apply for complex domains and
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Fig. 2. Computed surface pressure distribution with different

grid densities and order of accuracy over a double delta wing at

M ¼ 0:22, a ¼ 19�, Re ¼ 4� 106.

Fig. 3. Comparison of third- and fifth-order accurate differen-

cing on the solution for a wake-case grid having 371,000 points

ð35� 103� 103Þ.
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compressible flows with discontinuities. For flows with

complex geometries that preclude the use of spectral

methods, the use of high-order numerical methods is a

necessity in order to minimize the overall computational

cost. The continued increase of computing power and

developments of parallel computing are expected to

make possible DES or even LES of flows with increased

complexity. For these applications, use of high-order

accurate CFD methods is necessary.

While the use of high-order accurate numerical

methods is relatively common for direct numerical

simulations (DNS) and LES methods, high-order

numerical methods have not been commonly used for

DES. As a result, DES of complex flows often exhibit

significant grid dependence. It is expected that use of

high-order spatially accurate numerical schemes com-

bined with improvements of DES models [13] will

eliminate the grid dependencies in DES calculations.

We hope that the resulting high-order RANS/DES

hybrid models will yield reliable predictions of realistic,

separated, unsteady flows in a computationally efficient

manner.

1.1. Prior work on high-order numerical methods

The favorable effects of high-order accurate methods

was early recognized even in several RANS simulations.

For example, simulations of delta wing vortical flows

[14], wind tip vortices [15], and helicopter rotor [16]. The

sensitivity of the numerical solution on grid resolution

[14,16], and the order of accuracy of the numerical

scheme [14,15] on the resolution of vortices was

demonstrated. Delta wing flows are dominated by the

leading edge vortices and accurate capturing of the

correct strength of the leading edge vortex strength is

essential for the prediction of loads and the vortex

breakdown location. Fig. 2 shows the effects of

increased grid resolution and high-order of accuracy

for the computation of the leading edge vortices over a

double delta wing [14]. It appears that the increase in

order of accuracy can yield better resolution of the

vortices even with lower grid resolution. Similar conclu-

sions are reported for the numerical prediction of the

wing-tip vortex [15]. In this study, increased grid density

and higher-order numerical schemes significantly im-

proved the accuracy of the final results. The compar-

isons of the predicted peak velocity in the vortex core

[15] shown in Fig. 3 demonstrate that in addition to

turbulence model the order of the scheme plays a very

significant role.

Furthermore, computations of rotorcraft flows [16,17]

demonstrated that the tip vortex is severely diffused by

the first passage even in computations performed with

10 million grid points. These computations used curvi-

linear structured meshes and suffered from an inap-

propriate placement of the grid points and insufficient
grid resolution for the tip vortex. This problem was

addressed by the tetrahedral unstructured flow solver

approach [17]. It was concluded, however, that adaptive

tetrahedral mesh approaches could have only limited
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success for even the simplest hovering rotor cases

because the adapted grid is anisotropic with computa-

tional cells of very large aspect ratio. The overset grid

approach [18] appears to resolve some of the problems

associated with grid topology but it still requires very

high grid resolution (greater than 60 million grid points)

for accurate capturing of the tip vortex. On the other

hand, calculations performed with high-order accurate

schemes in [19–21] and more recently in [22] demon-

strated that significant improvements in the accuracy of

rotor performance predictions can be obtained with just

a small increase in computing cost.

For the computation of flows with shocks, methods

designed to regularize the numerical solution have been

studied since the early attempts of von Neumann and

Richtmayer [23] who used finite-difference techniques

combined with the so-called artificial viscosity or

numerical dissipation. Use of numerical dissipation in

the finite-difference and finite-volume context has found

widespread application in solution methods for com-

pressible aerodynamic flows. The main difficulty in the

application of these methods in DNS, DES, and LES of

compressible flows is the control of numerical dissipa-

tion necessary to capture discontinuities that occur in

such flows. Too much numerical dissipation smears out

important flow field features. Too little numerical

dissipation yields unstable solutions. It was recently

demonstrated (see [24] and references therein) that the

inherent dissipation of nonlinear high-resolution meth-

ods can be exploited to successfully compute certain

types of turbulent flows [25] without need to resort to an

explicit turbulence model.

In previous numerical investigations [26,27], it was

shown that even the reduced numerical dissipation of

high-order, shock-capturing schemes can lead to sig-

nificant damping of turbulence fluctuations and mask

the effects of the subgrid-scale (SGS) models. For these

cases, a local application of the shock-capturing scheme

was found absolutely necessary in order to minimize

numerical dissipation. In the study of [26], for example,

this requirement was achieved by means of the applica-

tion of an essentially non-oscillatory (ENO) scheme only

in the shock-normal direction and over a few mesh

points around the mean shock position. Unfortunate-

ly, in most cases, the shock position is unknown and

one needs to introduce a sensor to detect possible

discontinuities.

In recent years, efforts were made to alleviate the

effects of numerical diffusion introduced by shock

capturing schemes and upwind methods. It was shown

[28–31] that for compressible flows without disconti-

nuities, high-order centered finite-difference schemes are

sufficiently stable and accurate for the computation of

convecting vortical structures and aeroacoustic distur-

bances when they are combined with explicit, spectral-

type filtering for numerical stability [28]. In addition,
centered schemes were found particularly useful for

prediction of noise sources. These high-order centered

schemes, which can be extended into finite-volume

context, and the spectral-type or characteristic-based

filters, which are necessary to stabilize centered schemes

and suppress spurious modes, are summarized in

Section 3.

For high-speed flows with shocks, numerical solutions

that are uniformly high-order accurate up to the

discontinuity can be obtained with ENO [32] and

weighted ENO (WENO) [33,34] schemes. These meth-

ods are presented in detail in Section 4. On the other

hand, it was shown that explicit filters [30] could also be

used with high-order centered schemes to obtain shock

capturing. Application of explicit filters [30] yielded

improved computational efficiency of flows with dis-

continuities compared to ENO [32] or WENO methods

[33,34]. Explicit filters can be easily implemented into

existing codes because the filter step is essentially

independent of the basic differencing scheme and is

applied as post processing. In the same spirit, Yee et al.

[1] showed that the dissipative part of a shock-capturing

scheme could be applied after each time step to

regularize the numerical solution and acts like a filter.

Moreover, to meet the requirement of a local application

of the numerical dissipation, the amplitude of the

dissipation is evaluated with a sensor derived from the

artificial compression method (ACM) of Harten [35].

The filters of Yee et al. [1] are referred to as

characteristic-based filters and they are summarized in

Section 3. The numerical test in Yee et al. [1] used total

variation diminishing (TVD) schemes to construct the

characteristic-based, non-linear filter. The possibility of

using high-order non-linear filters based on essentially

non-oscillatory (ENO) reconstruction has been demon-

strated in [36].

In parallel with the finite-difference [37], finite-volume

methods [38], and high-resolution methods [39], which

found widespread application in CFD and turbulence

simulation, finite-element methods [40–44] were also

used for convection-dominated problems. Application

of the finite-element method is far from trivial for non-

linear convective problems, such as compressible flow

with discontinuities. For such cases, the finite-element

numerical solution must capture the physically relevant

discontinuities without introducing spurious oscilla-

tions. This issue is addressed successfully by the

discontinuous Galerkin (DG) method [45]. The DG

method assumes discontinuous approximate solutions.

Subsequently, it treats discontinuities in a manner

analogous to high-resolution finite-difference and fi-

nite-volume methods for nonlinear hyperbolic systems

by incorporating suitably defined numerical fluxes and

slope limiters into the finite-element framework. Due to

its local character, the DG finite-element method is very

suitable for local grid refinement and becomes highly
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parallelizable. This method is also presented and

analyzed in Section 5.

Recently, another type of high-order accurate, con-

servative and computationally efficient scheme was

introduced for the solution of conservation laws in

unstructured grids. This scheme is known as the spectral

volume (SV) method [46]. The concept of a ‘‘spectral

volume’’ was introduced to achieve high-order accuracy

in an efficient manner similar to spectral methods and at

the same time retain the benefits of the finite-volume

formulations for problems with discontinuities. In the

SV method, each spectral volume, which is the same as

the traditional triangular or tetrahedral finite volume, is

further subdivided into volumes called control volumes.

Cell-averaged data from these control volumes are used

to reconstruct a high-order approximation in the

spectral volume, while Riemann solvers are used to

compute the fluxes at the spectral volume boundaries.

The main difference of the SV method and DG method

is that for the SV method, the cell-averaged variables

in the control volumes are updated independently.

Similar to the DG method, the SV method uses TVD

or total variation bounded (TVB) limiters to eliminate/

reduce spurious oscillations near discontinuities. A very

desirable feature of the SV method is that the

reconstruction is carried out analytically, and does not

involve large stencils in contrast to the computationally

intensive reconstruction in high-order finite-volume

methods.

The DG and SC methods are both suitable for high-

order discretization of complex domains using unstruc-

tured meshes. In addition, they are fully conservative

due to the use of Riemann fluxes across element

boundaries. Another high-order conservative scheme

for unstructured quadrilateral grids is the multidomain

spectral method on a staggered grid recently developed

by Kopriva and Kolias [12,47–49]. The multidomain

spectral method is similar to the spectral element

method by Patera [50]. The spectral element method is

high-order accurate and more flexible compared to

spectral methods for discretizations of complex do-

mains. It is however not conservative. Although very

high order of accuracy can be achieved with both the

multidomain spectral and the spectral element method,

these methods are difficult to extend to other cell types

such as triangles or tetrahedral cells [51]. These spectral

methods and other recent, less widely used, high-order

methods [52,53] will not be presented here. Further

information about these methods can be found in the

original references. A detailed presentation of the theory

and implementation of the spectral element method can

also be found in the recent book by Karniadakis and

Sherwin [43].

This paper is organized as follows: The governing

equations in differential and integral form are presented

in Section 2. Time integration methods for high-order
accurate schemes are also summarized in Section 2. The

presentation of high-order accurate spatial discretization

methods is given in Sections 3–6. In Section 3, high-

order accurate discretization with finite-difference and

finite-volume centered methods is presented. In Section

4, ENO and WENO reconstruction is explained and

WENO and ENO high-order schemes are presented.

The discontinuous Galerkin method is presented and

analyzed in Section 5. In Section 6, the recently

developed spectral volume method is presented. At the

end of each section selected examples from the applica-

tion of the high-order methods are shown. Finally, in

Section 7, some comparisons and general remarks are

given.
2. Governing equations

The full Navier–Stokes (NS) equations govern non-

linear fluid dynamics and aeroacoustics over complex

configurations. For the majority of compressible flow

simulations, these equations are cast in the strong

conservation form [37]. For numerical solutions based

on the Galerkin/least-squares method, different sets of

variables may be used [54]. For all sets of variables

tested with the Galerkin/least-squares method [54],

global conservation and correct shock structure was

achieved for any set of variables. This is not, however,

true for finite-difference and finite-volume numerical

methods traditionally used in aerodynamics. These

methods use the conservative flow variables to ensure

conservation and discontinuity capturing. The primitive

variable formulation was used rarely in aerodynamics

either with shock fitting schemes [55], or for the

computation of subsonic compressible flows without

discontinuities [56]. The transformation from conserva-

tive to primitive variables or other sets of variables is

obtained by multiplying the conservative variables

vector with the appropriate flux Jacobian. For example,

primitive variables are obtained by multiplying with

M ¼ qU=qV , U ¼ ½r;ru; rv;ET 
, V ¼ ½r; u; v; p
 see [57]
for more details.
2.1. Conservative form of the NS equations

The conservative variable formulation of the N–S

equations in divergence form is

qU
qt
þr � Fi ¼

1

Re
r � Fv, (2.1)

where U is the conservative variable vector, Fi
is the inviscid flux vector, and Fv is the viscous flux

vector.

Numerical solutions with finite-volume (FV) methods

are obtained with the integral form of the NS equations
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for a control volume O with boundary qO

q
qt

Z
O

U dxþ

I
qO
½F ðU; nÞ � FvðU ;rU ; nÞ
dS ¼ 0,

(2.2)

where U ¼ ½r; rV; rE
T;F ðU; nÞ ¼ V � nU ;FvðU;rU; nÞ
¼ ½0; t; t � V� q � n
T, with t and q representing the stress

and heat flux vectors, V ¼ ðu; v;wÞT is the velocity

vector, and n is the outward unit normal vector to the

boundary qO. For flows with discontinuities the integral
form holds and any discrete scheme must obey both

local and global conservation in order to capture

correctly weak solutions [58]. Finite-volume (FV)

methods gained popularity in aerodynamics because

they make possible numerical solutions in complex

domains with unstructured or mixed type grids [59].

During the 1980s upwind mechanisms were introduced

into FV algorithms leading to increased robustness of

FV for applications with strong shocks and provided

better resolution of viscous layers due to the decrease of

numerical dissipation compared to FV methods that

employed artificial dissipation [60,61].

Finite-element (FE) methods, which use the weak

form of Eq. (2.1), gained popularity in aerodynamics

with the development of the discontinuous Galerkin

method [45] and the stabilized finite-element methods

[62–64]. The weak form is obtained by multiplying the

strong form of Eq. (2.1) by a test function W t

and integrating over the domain. The weak form of

Eq. (2.1) is

q
qt

Z
O

W tUdxþ

I
qO

W t½F ðU; nÞ � FvðU ;rU ; nÞ
 � ndS

�

Z
O
rW t½F ðU; nÞ � FvðU ;rU ; nÞ
dx ¼ 0. ð2:3Þ

The integral form, Eq. (2.2), is the weak form of

Eq. (2.3) for unity weight function. The stabilized finite-

element methods augment the weak form of the

governing equations with stabilization terms [63–65].

The real power of unstructured grid methods with FV

or FE discretization is their ability to adapt not only to

complex geometries but also to solution features without

being constrained by considerations such as grid

structure, orthogonality or topology. However, aniso-

tropic grid adaptation of three-dimensional, high

Reynolds number flows, which contain both disconti-

nuities and smooth but complex flow features, still

remains a challenge. Consider for example high-lift

systems where shock waves, confluent boundary layers,

and wake roll-ups may be present in the flowfield. Grid

adaption for these flows, which are common in

aerodynamic applications, combined with high-order

methods offers the additional possibility of hp-type

refinement [43,66]. hp refinement uses low-order accu-

rate solution and high grid density (h-refinement) at the
neighborhood of discontinuities. For the resolution of

smooth but complex flow features and for wave

propagation, the order of accuracy of the numerical

solution increases (p-refinement) and a relatively coarse,

canonical mesh is used.

Finite-difference methods on structured type grids are

often used for the numerical solution of the governing

equations because of their efficiency. The major

difficulty with finite-difference methods is structured-

type grid generation. The task of generating structured

grids over complex configurations is still a serious

challenge even with the multiblock structured grid

approach. The powerful approach of overlapping grids,

or Chimera-type grids [67], where structured grids

generated about different simple components are

allowed to overlap, further facilitates volume grid

generation. Numerical solutions in complex domains

with finite-difference methods on body-fitted deformed

meshes [68] are obtained by expressing, Eq. (2.1) (see

[37]) in terms of a generalized non-orthogonal curvi-

linear coordinate system ðx; Z; zÞ using general trans-
formations x ¼ xðx; y; zÞ, Z ¼ Zðx; y; zÞ, z ¼ zðx; y; zÞ
as follows:

q
qt

U

J

� �
þ

qbF
qx
þ
q bG
qZ
þ

q bH
qz
¼
1

Re

qcFv

qx
þ
qcGv

qZ
þ

qcHv

qz

" #
.

(2.4)

For turbulent flow calculations, the molecular viscos-

ity m is replaced by the turbulent eddy viscosity mþ mt.
The turbulent eddy viscosity mt is obtained from

turbulence models developed during the last decades.

These turbulence models range from simple algebraic

models to one- and two-equation turbulence models, or

more sophisticated Reynolds stress models [69].

2.2. Entropy splitting

The unique properties of the compressible Euler

equations for a perfect gas allows splitting of the flux

vectors [70]. A special splitting of the flux derivative can

be obtained using a convex entropy function and certain

homogeneous properties. This splitting yields a sum of

a conservative portion and a non-conservative portion

of the flux derivative referred to by Yee et al. [71] as

the ‘‘entropy splitting’’. Yee et al. [71] investigated the

choice of the arbitrary parameter that determines the

amount of splitting and its dependence on the type of

physics of interest to CFD. In addition, the manner the

splitting affects the nonlinear stability of central schemes

for long time integration of unsteady flows, such as in

nonlinear aeroacoustics and turbulence dynamics, was

assessed.

The first step for the derivation of the entropy

splitting for the compressible Euler equations for a

perfect gas ðp ¼ rRTÞ is to introduce a symmetry
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transformation form the vector of the conservative

variables U to a new vector of symmetry variables W,

referred to as the ‘‘entropy variables’’. The transforma-

tion is chosen so that the flux Jacobian matrix with

respect to W, FW ¼ qF=qW is symmetric and positive

definite. A family of symmetry transformations based on

a scalar convex function Z, referred to as ‘‘entropy

function’’ have been derived for the Euler equations for

a perfect gas by Harten [72] and Gerritsen and Olsson

[73,74]. The entropy function Z has the form

Z ¼ rxðsÞ, (2.5)

where the function xðsÞ is an arbitrary but differentiable
function of a dimensionless physical entropy s ¼ log ðpr�gÞ.
The entropy variables W are then given by W ¼

qZ=qU and are chosen such that F ðUðW ÞÞ, GðUðW ÞÞ,

HðUðW ÞÞ and UðW Þ are homogeneous functions of W

of degree b, i.e. there is a constant b such that for all f
the conservative variable vector and the flux satisfy:

UðfW Þ ¼ fbUðW Þ,

F ðfW Þ ¼ fbF ðW Þ. ð2:6Þ

The homogeneity property implies that

FW W ¼ bF ðUðW ÞÞ,

UW W ¼ bU , ð2:7Þ

where UW ¼ qU=qW is the transformation matrix from

conservative variables to entropy variables and UW ¼

qF ðW Þ=qW is the flux Jacobian with respect to entropy

variables. The splitting of the flux derivative Fx is

Fx ¼
qF

qx
¼

1

bþ 1
ðFW W Þx þ

1

bþ 1
FW W x

¼
b

bþ 1
Fx þ

1

bþ 1
FW W x. ð2:8Þ

The entropy variables vector is

W ¼

W 1

W 2

W 3

W 4

W 5

26666664

37777775 ¼
pn

r

eþ
a� 1
g� 1

p

�ru

�rv

�rw

r

266666664

377777775. (2.9)

Expressions for F ðUðW ÞÞ and FW appearing in

splitting of the flux derivative of Eq. (2.8) can be found

in [71].

Introduction of entropy splitting increases signifi-

cantly the computing cost of the inviscid part. It was

shown however in [71] that the increase in computing

cost is justified because for turbulent flow simulations,

for example, that involve long time integrations and

contain weak shock waves, entropy splitting can

minimize the use of numerical dissipation due to its

nonlinear stability property. For example the compar-
ison of Fig. 4 demonstrated improvements of the

numerical solutions for vortex pairing computed with

entropy splitting and the unsplit scheme. For the value

a ¼ �3 ðb ¼ 4Þ, used in [71] the improvements of the
entropy split scheme are evident. A comparison of

computations obtained with entropy split and unsplit

schemes for shock wave impingement on a spatially

evolving mixing layer is shown in Fig. 5. Deterioration is

obtained for a ¼ 10 ðb ¼ �28:5Þ corresponding to

103.6% conservative portion, but for a ¼ �10 ðb ¼
21:5Þ corresponding to less than 100% conservative

portion the solution shows reduction of spurious noise.

Increase of the conservative portion beyond 80%

often defeats the purpose of using splitting since any

gains in stability are diminished by the expense of added

CPU computation required by splitting. For additional

comments and details on the choice of the splitting

parameters b, see Yee et al. [71].

2.3. Time integration of the Euler and NS equations

The time scales of turbulence are very small and

the evolution of turbulent structures is very rapid.
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As a result, in DNS and LES of transitional and

turbulent flows the time step is not determined by

stability considerations but from time resolution re-

quirements. For this class of problems, explicit schemes,

which are computationally efficient, easy to parallelize,

and provide high accuracy in time, are the methods of

choice. In many cases, use of explicit methods is also

necessary for wave propagation applications, such as

aeroacoustics, where dissipation and dispersion must be

kept at very low level. For this class of problems,

optimized explicit schemes have been developed.

In many CFD applications, steady-state solutions are

needed. Convergence to a steady state is often obtained

using explicit and/or implicit methods with multigrid

acceleration or with implicit methods. For time-

depended aerodynamic problems, where time accuracy

is of interest, such as rotor aerodynamics, time integra-

tion of the Euler and Navier–Stokes equations is often

obtained with implicit methods that are second order

accurate in time. Implicit methods [75] are more

intensive computationally compared to explicit methods

and they do not offer high accuracy in time. However

they do not have limitations in time step due to

numerical stability for highly stretched meshes required

for viscous flow simulations. Another class of methods

for time integration of time-dependent viscous flow

problems is explicit methods with multigrid acceleration

and dual time stepping. Multigrid methods [76,77] for

convergence acceleration is a wide topic and will not be

presented here. A brief overview of explicit and implicit

method used in CFD is given in the following sections.
2.3.1. Explicit temporal schemes

Time integration can be obtained with the method of

lines by considering the governing equations as a system

of ordinary differential equations ODEs in time where

the right-hand side contains the space discretization.

Possible choices for explicit time stepping of these ODEs

are the third- or higher-order explicit linear multistep

methods (LMMs) Gear [78], Lambert [79] and Bucher

[80]. For non-stiff or moderately stiff multidimensional

problems, high-order accuracy (higher than second)

temporal accuracy may be obtained with the Runge–

Kutta (RK) methods. RK methods advance in time the

following semi-discrete form of the governing equations

Ut ¼ RðUÞ,, where R is the spatial discretization

operator that is discussed in detail in the following

sections.

A general RK can be written in the form

U ðiÞ ¼
Xi�1
k¼0

aikU ðkÞ þ DtbikRðU ðkÞÞ; i ¼ 1; . . . ;m,

(2.10)

where

U ð0Þ ¼ Un; U ðmÞ ¼ Unþ1

for aikX0, bikX0 Eq. (2.10) is just a convex combination

of Euler forward operator with Dt replaced by

ðbik=aikÞDt since
Pk�1

k¼0 aik ¼ 1. The general RK method

of Eq. (2.10) is TVD under the CFL condition DtpcDt if

c ¼ mini;kðaik=bikÞ, and aikX0; bikX0. In many CFD

applications the third-order (TVD) Runge–Kutta meth-

od, RK3-TVD [81] that is compatible with TVD, ENO

or WENO schemes was used. This RK method is TVD

in the sense that the temporal operator itself does not

increase the total variation of the solution. The TVD

property of the time integration scheme plays an

important role for time marching of nonlinear hyper-

bolic problems. It was shown in Ref. [81] that the TVD

property is achieved with a four-stage, fourth-order

TVD RK-4 method which is, however, quite intensive

computationally because during the second and third

stage two additional eR’s, the adjoint operator of R, must

be computed. In addition, a fifth-order accurate RK

method was presented by Shu and Osher in [32]. For

order of accuracy higher than four, however, the

number of stages is larger than the order of accuracy

and RK methods with order of accuracy higher than

four become very intensive computationally. For multi-

dimensional calculations storage is usually of impor-

tance. Therefore, in [82,83] low storage RK method,

which only require two storage units, have been

developed.

Numerical schemes for computations of wave propa-

gation have special requirements. In computational

aeroacoustics, for example, numerical schemes that have

minimal dissipation and dispersion errors in both time
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and space discretization are desired because the acoustic

waves are non-dispersive and non-dissipative in their

propagation. High-order spatial discretization is applied

in aeroacoustics while time integration is often per-

formed with RK methods. In the multistage RK

methods of Eq. (2.10), the coefficients are chosen such

that the maximum possible order of accuracy is obtained

for a given number of stages. It is possible, however, Hu

et al. [84], to choose the coefficients of the RK method

so as to minimize the dissipation and dispersion errors

for the propagation of waves, rather than to obtain the

maximum possible formal order of accuracy. The

optimized schemes are referred to in [84] as low-

dissipation, low-dispersion RK (LDDRK) schemes.

Optimization strategies of numerical schemes for wave

propagation has been conducted in several other studies

[85,86]. The LDDRK schemes have certain advantages

because they are applicable to different spatial discreti-

zation methods. The optimization is carried out only for

the resolved wavenumbers in the spatial discretization,

they preserve the frequency in the time integration and

thus are dispersion relation preserving in the sense of

[86], and they are low storage. Other optimized schemes

are the multistage Runge–Kutta-type time marching

methods for Mac Cormack-type schemes developed by

Hixon and Turkel [87].

2.3.2. Implicit schemes

An implicit time marching method that was used

successfully in computations where high order of spatial

accuracy was implemented with finite differences is the

approximately factored Beam-Warming algorithm [88]

augmented with Newton-like subiterations in order to

achieve second-order time accuracy. The factored im-

plicit Beam-Warming algorithm, as well as other implicit

time marching schemes, assumes second-order accurate

in time linearization of the fluxes FðUÞ as follows:

Fnþ1 ¼ Fn þ
qF

qU

� �n

DUn þ OðDtÞ2,

¼ Fn þ AnDUn þ OðDtÞ2, ð2:11Þ

where DUn ¼ Unþ1 �Un. As a result, these schemes can

achieve second order of accuracy in time at most,

provided that linearization errors are eliminated during

the time integrations process. Therefore, for time accu-

rate solutions with the Beam-Warming algorithm and

other implicit algorithms, which use the linearization of

Eq. (2.11), require one or more Newton-type subitera-

tions in order to eliminate linearization and/or factor-

ization errors and obtain second-order accuracy in time.

The approximately factorized Beam-Warming (BW)

algorithm is compatible with centered finite difference

discretizations of right-hand side and is often used in

CFD application. Central differences on the right-hand

side of the BW-factored algorithm were replaced by first-
order upwinding using Steger–Warming flux vector

splitting [89] for numerical solution with upwind

discretizations of the right-hand side. The BW algorithm

is formally second accurate in space and compatible with

centered discretizations of right-hand side. For higher-

order discretizations of the right-hand side, high-order

accuracy of the implicit operators was obtained [90]

where the derivatives in the LHS operator were evaluated

with a fourth-order accurate, three-point, compact

stencil. Using a fourth-order accurate compact scheme

for the evaluation of the right-hand side the algorithm

has fourth-order formal accuracy in space. The resulting

high-order accurate in space implicit, compact algorithm

was tested and analyzed in [90,91]. It was found that it is

unconditionally stable in two dimension as the original

Beam–Warming second-order accurate algorithm.

Furthermore, it was shown that it yields accurate solu-

tions of time dependent problems with fewer subitera-

tions and converges faster to the steady state [90].

Starting from the control volume formulation Yoon

and Jameson [92] obtained an unfactored implicit

scheme from the nonlinear implicit scheme by linearizing

the flux vectors about the preceding time step and

dropping terms of second order or higher. Recently, the

LU-SGS scheme was further extended by Zhang and

Wang [93] for time accurate solutions by introducing

dual time-stepping.

2.3.3. Time accurate solutions with multigrid

Implicit methods in the finite-volume context algo-

rithm can be found in Refs. [95,94]. After applying

finite-volume discretization and using the method of

lines [94], the following coupled system of ordinary

differential equations is obtained

dU

dt
þ RðUÞ ¼ 0 (2.12)

applying three-point backward difference approxima-

tion for the time derivative in Eq. (2.12) obtain

3

2Dt
Unþ1 �

2

Dt
Un þ

1

2Dt
Un�1 þ RðUnþ1Þ ¼ 0. (2.13)

For time accurate computations with multigrid [94],

this equation is treated as a steady-state equation by

introducing a pseudo-time variable t� and using a

multigrid strategy to solve the following nonlinear

system to steady state using local time steps Dt�.

qW

qt�
þ R�ðW Þ ¼ 0, (2.14)

where W is the approximation to Unþ1 and the residual

R�ðW Þ defined by

R�ðW Þ ¼
3

2Dt
W þ RðW Þ � SðUn;Un�1Þ,

SðUn;Un�1Þ ¼
2

Dt
Un �

1

2Dt
Un�1. ð2:15Þ
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Time integration of Eq. (2.14) is obtained with a

multistage Runge–Kutta method that performs the role

of the smoother in the multigrid process.
3. High-order finite-difference schemes

In the past, efforts were made towards developing

high-order finite-difference (FD) methods in the areas

direct and large eddy simulations. For nonlinear

problems, straightforward application of high-order

accurate central difference schemes is not possible,

because the spurious modes that develop from the

unresolvable by the numerical discretization high-

frequency modes lead to instabilities. Rai and Moin

[96] found that high-order upwind schemes are more

promising to simulate turbulent flows. However, early

attempts to apply high-order finite differences were

often frustrated because of lack of robustness of the

proposed high-order (FD) schemes compared to spectral

methods. In spite of the difficulties, some success was

achieved for the computation of incompressible [96] and

compressible [56] flows with high order, upwind FD

schemes. The fifth-order accurate derivatives in [96] were

computed with upwind-biased formulas based on the

sign of the velocity as

ui ¼ � 1
120
½6uiþ2 þ 60uiþ1 þ 40ui � 120ui�1

þ 30ui�2 � 4ui�3
 for ui40,

ui ¼
1
120 ½4uiþ3 � 30uiþ2 þ 12uiþ1 � 40ui

� 60ui�1 þ 6ui�2
 for uio0. ð3:1Þ

Upwinding alleviated some of the problems encountered

with centered schemes and yielded some promising

results for both incompressible [96] and compressible

flow [56] direct numerical simulations.

Upwind biased, high-order accurate stencils (up to

fifth-order) for the evaluation of the derivatives were

also used successfully for the computation of complex

incompressible flows [97,98] and wave propagation [99].

Upwind-biased schemes, however, based only on formal

accuracy (truncation error) inherently introduce some

form of artificial smoothing that makes them inap-

propriate for long time integration and direct simulation

or large eddy simulation or turbulence.

Application of Taylor series expansion yields cen-

tered, explicit and compact finite difference formulas for

space differentiation on equally spaced meshes. Central-

difference schemes gained popularity in the simulation

of wave propagation phenomena because in contrast to

upwind methods, which in addition to dispersion

naturally introduce artificial dissipation, the dominant

error in centered discretizations is depressive. The

stencils for the fourth-, sixth-, and eight-order accurate

symmetric, explicit, centered schemes are five-, seven-

and nine-point wide, respectively. As a result, only the
fourth-order explicit scheme was used in CFD. Explicit

fourth-order, finite-difference formulas are often used to

discretize the second derivatives in the viscous terms by

taking the first derivative twice. In order to reduce the

stencil width the inner derivative is evaluated at half-

points.

The first systematic attempt to develop high-order

accurate, narrow stencil, finite-difference schemes ap-

propriate for problems with a wide range of scales was

presented by Lele [100]. Compared to the traditional FD

approximations the compact schemes presented by Lele

[100] provided a better representation of the short-length

scales. As a result, compact high-order schemes are

closer to spectral methods and at the same time maintain

the freedom to retain accuracy in complex stretched

meshes. Emphasis in the development of compact

schemes was given on the resolution characteristics of

the difference approximations rather than formal

accuracy (i.e. truncation error). The notion of resolution

was quantified by Lele [100] using a Fourier analysis of

the differencing scheme [101,102]. This analysis com-

pares the resolving power of different schemes based on

a more general notion of intervals per wavelength of

Swartz and Wendroff and Kreiss and Oliger. Using

these ideas, Lele [100] analyzes the resolution character-

istics of the schemes based on the accuracy with which

the difference approximation represents the exact result

over the full range of length scales that can be realized

for a given mesh.
3.1. Centered compact schemes

Of particular interest in recent applications has been

the class of centered schemes that require small stencil

support. These ‘‘compact’’ schemes presented by Lele

[100] can be derived from Taylor series expansions and

compute simultaneously the derivatives along an entire

line in a coupled fashion. The main advantage of

compact schemes is simplicity in boundary condition

treatment and smaller truncation error compared to

their noncompact counterparts of equivalent order.

Compact schemes are, however, more intensive compu-

tationally compared to explicit schemes because they

require matrix inversion.

A seven-point wide stencil, finite-difference discretiza-

tion of any first-order derivative f 0 of a scalar pointwise

discrete quantity, f, in the governing equations, such as

metric terms or flow variables, is obtained in the

computational domain on an equally spaced mesh by

Bf 0jþ2 þ Af 0j�1 þ f 0j þ Af 0jþ1 þ Bf 0jþ2

¼ a
f jþ1 � f j�1

2h
þ b

f jþ2 � f j�2

4h
þ c

f jþ3 � f j�3

6h
, ð3:2Þ

where A;B; a; b and c determine the spatial accuracy of

the discretization. Different values of the coefficients in



ARTICLE IN PRESS

wave number

M
o

d
if

ie
d

 w
av

e 
n

u
m

b
er

Exact
E2
E4
E6
C4
C6
C8

π/4

π/4 π/2 π3π/4

π/2

3π/4

π

0.75 1.5 2.25

0.75

1.5

Fig. 6. Wave space resolution of explicit and compact centered

schemes for the first-order derivative.
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the formula of Eq. (3.2) yield schemes of different

accuracy ranging from the fourth-order explicit method

(E4) to the compact tenth-order accurate scheme (C10).

The values of the coefficients in Eq. (3.2) for schemes of

different order of accuracy are shown in Table 1.

In Table 1, C8/3 refers to the eight-order compact

scheme that requires tridiagonal matrix inversion and

C8/5 refers to the eight-order compact scheme that

requires pentadiagonal matrix inversion.

Compact approximations for the second-order deri-

vative f 00 are obtained from the following general form:

Bf 00j�2 þ Af 00j�1 þ f 00j þ Af 00jþ1 þ Bf 00jþ2

¼
a

h2
ðf jþ1 � 2f j þ f j�1Þ þ

b

4h2
ðf jþ2 � 2f j þ f j�2Þ

þ
c

9h2
ðf jþ3 � 2f j þ f jþ3Þ. ð3:3Þ

Explicit schemes can also be used for the evaluation of

the viscous terms because application of the compact

schemes is more expensive computationally. Further-

more, there are no very significant improvements in

wavespace resolution with the use of compact schemes

[100].

The wavespace resolution of various explicit and

compact schemes is obtained using Fourier analysis

[100–102] for Eqs. (3.2) or (3.3). Considering that the

exact result is a sinusoidal function f j ¼ e
ikh, where h ¼

Dxj is a uniform grid spacing and k is the wavenumber,

the exact value of the derivative is f 0j ¼ ikf j . The

derivative computed with finite difference formulas, on

the other hand, is given by bf 0j ¼ ibkf j , where
bk the

modified wavenumber, which depends on the form of

the FD formulas used for the evaluation of the first-

order derivative. The difference between the true

wavenumber k and the modified wavenumber bk is a

measure of the scheme’s resolving ability. The modified

wavenumber of various finite difference schemes can be

obtained using standard shift operators f 0jn ¼ f 0je
ik.

For example, the modified number of the fourth-order

accurate explicit scheme of Eq. (3.2) is given bybk ¼ ið8 sin k � sin 2kÞ=6, with analogous expression

for the other methods. A comparison of the modified

wavenumbers of the first derivative for several central
Table 1

Schemes with five-point stencil of Eq. (3.2)

Scheme A B a b c

E4 0 0 4
3

�1
3

0

C4 1
4

0 3
2

0 0

C6 1
3

0 14
9

1
9

0

C8/5 4
9

1
36

40
27

25
54

0

C8/3 3
8

0 75
48

1
5

� 1
80

C10 1
2

1
20

17
12

101
150

1
100
compact and non-compact schemes is shown in Fig. 6.

Using the scaled wavenumber o ¼ 2pkh=l where l is the
wavelength and the number of intervals or grid points

per wavelength is 2pk=o. Therefore, the lower the

scheme’s resolving ability the higher is the number of

points per wavelength required to resolve accurately

certain predetermined portion of the range ½0; 2p
.
Stable, accurate formulas for the boundary points can

be found in [103]. Numerical solutions of nonlinear

hyperbolic equations with central-difference methods

develop spurious modes arising from unresolvable scales

and inaccuracies in the application of boundary condi-

tions. Spectral-type [28] or characteristic-based [1] filters

that can be used to stabilize numerical solutions

performed with central-difference methods are presented

in the following sections.

3.2. Boundary closures for high-order schemes

The primary difficulty in using higher-order schemes

is identification of stable boundary schemes that

preserve their formal accuracy. Boundary closures for

various explicit and compact high-order centered

schemes were presented by Carpenter et al. [103]. The

stability characteristics of compact fourth- and sixth-

order spatial operators with boundary closures were

assessed [103] with the theory of Kreiss [104] and

Gustafsson, Kreiss and Sundstrom (GKS) [105] for the

semidiscrete initial value problem.

Numerical solutions of hyperbolic systems preserve

their formal spatial accuracy when an Nth-order inner

scheme is closed with at least an ðN � 1Þth-order

boundary scheme. Furthermore, determination of the

numerical stability of a fully discrete approximation

(including boundary schemes) for a linear hyperbolic

partial differential equation is a difficult task. Fourier

techniques are not straightforward to apply and do not
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provide sufficient conditions for numerical stability.

Gustafsson et al. [105] developed stability analysis

techniques based on normal modal analysis. The theory

of [105], generally referred to as GKS stability theory,

established conditions that the inner and boundary

schemes must satisfy to ensure stability. The GKS

theory was used by Carpenter et al. [103] to assess the

stability of boundary schemes proposed for the fourth-

and sixth-order compact schemes.

Consider the finite-difference representation of the

continuous derivative Ux ¼ U 0
j on an equally spaced

mesh. The discrete form of the first derivative U 0
j

involves functional values Uj ; j ¼ 1; . . . ;N at discrete

points. For an explicit uniformly fourth-order accurate

in space scheme, the spatial discretization with boundary

closures is obtained by Carpender et al. [103] as

U 0
1 ¼

1

12Dx
ð�25U1 þ 48U2 � 36U3 þ 16U4 � 3U5Þ,

U 0
2 ¼

1

12Dx
ð�3U1 � 10U2 þ 18U3 � 6U4 þU4Þ,

U 0
j ¼

1

12Dx
ðUj�2 � 8Uj�1 þ 8Ujþ1 �Ujþ2Þ,

j ¼ 3; . . . ;N � 2,

U 0
N�1 ¼

1

12Dx
ð�UN�4 þ 6UN�3 � 18UN�2

þ 10UN�1 þ 3UN Þ,

U 0
N ¼

1

12Dx
ð3UN�4 � 16UN�3 þ 36UN�2

� 48UN�1 þ 25UN Þ. ð3:4Þ

The fourth-order, compact FD scheme for the

approximation of U 0
j that has narrower stencil requires

closures only at j ¼ 1 and j ¼ N. The fourth-order

compact scheme with boundary closures is

U 0
1 þ 3U 0

2 ¼
1

6Dx
ð�17U1 þ 9U2 þ 9U3 �U4Þ,

U 0
j�1 þ 4U 0

j þU 0
jþ1 ¼

1

Dx
ð�3Uj�1 þ 3Ujþ1Þ,

3U 0
N�1 þU 0

N ¼
1

6Dx
ðUN�3 � 9UN�2

� 9UN�1 þ 17UN Þ. ð3:5Þ

The sixth-order compact scheme has a five point-wide

stencil and utilizes information from all five points

explicitly and three points implicitly (tridiagonal sys-

tem). Boundary closures must be provided at two points

at each end of the domain j ¼ 1; 2 and j ¼ N � 1;N:
To ensure formal sixth-order formulas, e.g. the opti-

mal scheme, in shorthand nomenclature, would be

(5, 5-6-5, 5), e.g. fifth order at the boundaries j ¼ 1; 2
and j ¼ N � 1;N and sixth order in the interior.

Formally sixth-order accurate GKS stable schemes

are difficult to find. Therefore, the (3, 5-6-5, 3) and the
(4, 5-6-5, 4) schemes are used for full discretization with

the sixth-order compact scheme.

The third order closure at j ¼ 1 is:

2U 0
1 þ 4U 0

2 ¼
1

Dx
ð�5U1 þ 4U2 þU3Þ.

The fourth-order closure at j ¼ 1 is

6U 0
1 þ 18U 0

2 ¼
1

Dx
ð�17U1 þ 9U2 þ 9U3 �U4Þ

and the fifth-order closure at j ¼ 2 is accomplished by

3U 0
1 þ 18U 0

2 þ 9U 0
3 ¼

1

Dx
ð�10U1 � 9U2 þ 18U3 þU4Þ.

The two key issues encountered with higher-order

finite-difference schemes used in CFD are boundary

treatments and grid uniformity. The boundary treat-

ment was carefully addressed by Carpenter et al. [103]. It

was found that the effect of boundary closures to the

overall resolution is indeed small [106] even for highly

accurate DNS. The grid non-uniformity issue is,

however, more important and its effect on the overall

accuracy of higher-order finite-difference schemes on

non-uniform grids was recently assessed in [107].

The use of non-uniform grids in turbulent flow

simulations is inevitable. The typical ratio of the

maximum to the minimum grid spacing is about 100.

The behavior of the second- and fourth-order explicit

centered schemes and the fourth- and sixth-order

compact schemes was assessed in [107] for smooth

stretched grids. It was found that grid quality has

stronger effects on the higher-order compact schemes

than on the explicit schemes. Furthermore, an accuracy

deterioration of higher-order compact schemes with low

grid density was observed for non-uniform meshes.
3.3. Simultaneous evaluation of the first and second

derivative with compact schemes

A more general version of the standard compact

schemes presented by Lele [100] was developed by

Mahesh [108]. These schemes are symmetric and differ

from the standard compact schemes in that the first and

second derivatives are evaluated simultaneously. In

addition, for the same stencil width the schemes

proposed by Mahesh are two orders higher in accuracy,

they have significantly better spectral representation,

and the computational cost for the evaluation of both

derivatives is shown to be essentially the same as

standard compact schemes. As a result, the proposed

schemes appear to be attractive alternative to standard

compact schemes for the Navier–Stokes equations that

include second-order derivative evaluation in the viscous

terms. The schemes that compute simultaneously the

first f 0 and the second derivative f 00 of a function f given
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at uniform mesh, Dx ¼ h, are defined by

a1f
0
j�1 þ a0f

0
j þ a2f

0
jþ1 þ h ðb1f

00
j�1 þ b0f

00
j þ b2f

00
jþ1Þ

¼
1

h
ðc1f j�2 þ c2f j�1 þ c0f j þ c3f jþ1 þ c4f jþ2Þ. ð3:6Þ

Enforcing symmetry for the coefficients and considering

a0 ¼ 1 and b0 ¼ 1 Mahesh [108] obtain from Eq. (3.6)

a sixth- and an eight-order compact scheme for the

simultaneous evaluations of the first- and second-order

derivative

For example, the sixth-order scheme is

7f 0j�1 þ 16f 0j þ 7f 0jþ1 þ hðf 00j�1 � f 00jþ1Þ

¼
15

h
ðf jþ1 � f j�1Þ

� 9f j�1 � 9f 0jþ1 � hðf 00j�1 � 8f 00j þ f jþ1Þ

¼
24

h
ðf j�1 � 2f j þ f jþ1Þ. ð3:7Þ

Comparing the new scheme of Eq. (3.7) with the

standard compact sixth-order compact schemes for the

first- and second-order derivative of the previous section

f 0j�1 þ 3f 0j þ f 0jþ1 ¼
7

3h
ðf jþ1 � f j�1Þ þ

1

12h
ðf jþ2 � f j�2Þ,

2f 00j�1 þ 11f 00j þ 2f 00jþ1 ¼
12

h2
ðf j�1 � 2f j þ f jþ1Þ

þ
3

4h2
ðf j�2 � 2fj þ f jþ2Þ. ð3:8Þ

It is evident that the Mahesh scheme [108], which

computes the first and second derivative in a coupled

fashion, uses a more narrow stencil compared to the

standard compact scheme. In addition, to the sixth-

order compact scheme an eight-order compact scheme

was developed in [108]. Boundary closures were also

applied for both the sixth- and eight-order compact

schemes for simultaneous computation of the first and

second derivative.

3.4. Modified high-order finite-difference schemes

The idea of modifying or optimizing a finite difference

schemes by calculating values of the coefficients that

introduce upwinding or minimize a particular type of

error instead of the truncation error has been used

successfully in the design of new schemes with desired

properties. Some form of upwinding is often needed for

the computation of flows with discontinuities and

nonlinearities. Modifications of standard centered,

explicit and compact schemes were carried out by Zhong

[109]. For the modified schemes, the formal order of the

scheme for certain stencil size was sacrificed and high-

order upwinding with low dissipation was introduced.

Other optimized schemes have also been developed

[110] in the field of computational aeroacoustics
[86,111,112]. The rationale for optimizing numerical

schemes for short waves is that for long waves, even

lower-order schemes can do well. The short waves,

however, require high-resolution in order to obtain

accurate representation of the broadband acoustic

waves. The optimized FD scheme of Tam and Webb

[86], for example, referred to as the dispersion relation

preserving (DPR) scheme, uses central differences to

approximate the first derivative. The approximation is

therefore, non-dissipative in nature. The maximum

formal order of accuracy of the centered scheme [86]

for certain stencil size is again sacrificed in order to

optimize resolution of the high wavenumbers. Although

non-dissipative schemes are ideal for aeroacoustics,

numerical dissipation is often required to damp non-

physical waves generated by boundary and/or initial

conditions. In many practical applications, therefore,

high-order dissipative terms were added to the centered

scheme of Ref. [86]. To remedy this problem optimized

DPR schemes were developed by Zhuang and Chen

[111] and Lockard et al. [110]. In the following sections,

the upwind high-order schemes of Zhong [109] and the

DPR scheme of Tam and Webb [86] are presented.
3.4.1. Upwind high-order schemes

A family of finite-difference high-order upwind

compact and explicit schemes for the discretization of

convective terms was derived in [109]. The general

compact and explicit finite-difference approximation of

qu=qx ¼ u0 is

XM0

k¼�MþM0þ1

biþku0iþk ¼
1

h

XN0

k¼�NþN0þ1

aiþkuiþk, (3.9)

where h is the uniform grid spacing, u0iþk is the numerical

approximation of the first derivative at the ði þ kÞth grid

point, and N0, M0 are biases with respect to the base

point i. The family of upwind compact and explicit

schemes with central grid stencils N ¼ 2N0 þ 1,

M ¼ 2M0 þ 1, was considered in [109]. The coefficients

aiþk and biþk of these upwind schemes were determined

such that the order of the schemes is one order lower

than the maximum achievable order for the standard

central stencil. As a result, the orders of the upwind

schemes are always odd integers p ¼ 2ðN0 þM0Þ � 1,

and there is a free parameter y in the coefficients aiþk

and biþk. The value of y is set to be the coefficient of
the leading truncation term, which is an even order

derivative.

XM0

k¼�M0

biþku0iþk ¼
1

h

XN0

k¼�N0

aiþkuiþk

�
y

ðpþ 1Þ!
hp qUpþ1

qxpþ1

� �
i

þ � � � ð3:10Þ
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Schemes of Eq. (3.10) are ðpþ 1Þth order accurate for

y ¼ 0 and pth order accurate for ya0. The choice of y
affects the magnitude of numerical dissipation and the

stability of the scheme. The third-, fifth- and seventh-

order explicit and compact schemes based on this idea

were derived by Zhong [109].

3.4.2. Dispersion-relation-preserving (DPR) scheme

Numerical solutions of the linearized Euler equations

with high-order finite-difference schemes are used to

assure that the computed results have the same number

of wave modes (acoustic, vorticity and entropy), the same

propagation characteristics (isotropic, non-dissipative

and non-dispersive), and the same wave speeds as those

of the solution of these equations, which govern acoustic

disturbance propagation. These conditions are satisfied

by the numerical solution if the discrete equations have

the same dispersion relation with the continuous

equation. Finite difference schemes which yield the same

dispersion relations as the original partial differential

equations are referred to as dispersion-relation-preser-

ving (DPR) schemes. A way to construct time marching

DPR schemes was proposed in [86] by optimizing the

finite difference approximations of the derivatives in the

wavenumber and frequency space. The new optimized,

high order, finite difference scheme [86] designed with

these criteria meets the usual conditions of consistency,

stability, and hence convergence. In addition, it supports,

in the case of small amplitude waves, wave solutions

which have the same characteristics as those of the

linearized Euler equations as nearly as possible.

Consider the approximation of the first derivative

qf =qx at the jth node on a uniform grid using N values

of f to the left. The finite difference approximation is

qf

qx

� �
i

’
1

Dx

XM
j¼�N

aj f iþj . (3.11)

The usual way to determine the coefficients aj in

Eq. (3.11) is to expand in Taylor series and equate

coefficients of the same powers in Dx. In Ref. [86], it was

proposed to determine the coefficients by requiring the

Fourier transform of the finite difference scheme on the

right of Eq. (3.11) to be a close approximation of the

partial derivative.

The finite difference representation of Eq. (3.11) can

be written as

qf

qx
’
1

Dx

XM
j¼�N

aj f ðxþ jDxÞ. (3.12)

Considering the Fourier transform of the left and right

of Eq. (3.12) obtain

ikef ’ 1

Dx

XM
j¼�N

aje
ikjDx

 !ef ¼ ekef . (3.13)
Clearly the quantity bk ¼ �iek is effectively the wave-

number of the Fourier transform for the finite-difference

schemes of Eqs. (3.11) and (3.12).

The Fourier transform of the finite difference scheme

is a good approximation of that of the partial derivative

over the range of wavenumbers jkDxjpp=2 when the
coefficients aj are chosen to minimize the integral of the

error defined by

E ¼

Z p=2

p=2
jkDx� bkDxj2 dðkDxÞ

¼

Z p=2

�p=2
iK �

XM
j¼�N

aje
ijK

�����
�����dK. ð3:14Þ

The condition of the minimum is

qE

qaj

¼ 0; j ¼ �N; . . . ;M. (3.15)

The solution of the algebraic system given by Eqs.

(3.15) determines the values of the coefficients aj that give

a good approximation of the derivative for jkDxjpp=2.
In Ref. [86], the condition of Eq. (3.12) was imposed

for n ¼ M ¼ 3 (fourth-order accuracy) and a1 was left

as free parameter. Minimization of Eq. (3.14) yielded

the following values for the coefficients a0 ¼ 0, a1 ¼

�a�1 ¼ 0:79926643, a2 ¼ �a�2 ¼ �0:18941314, a3 ¼

�a�3 ¼ 0:02651995. Therefore, the formal accuracy of
the scheme with the coefficients from Eq. (3.14) was

sacrificed, since a fourth-order accurate scheme was

obtained for a seven-point-wide stencil, but the resolu-

tion in wavespace was improved.

3.5. Spectral-type filters

High-order accurate centered schemes are non-dis-

sipative and they are particularly suitable for convection

of small-scale disturbances governed by the linearized

Euler equations. Non-dissipative, central-difference dis-

cretizations for nonlinear problems, however, produce

high-frequency spurious modes that originate from mesh

non-uniformities, inaccuracies of the boundary condi-

tions, and nonlinear interactions. In order to prevent

numerical instabilities due to growth of high-frequency

modes while retaining the high-order accuracy of the

compact or non-compact central discretizations, filtering

of the computed solution is required. Filtering of the

solution with explicit-type filters was proposed by Lele

[100]. More recently, high-order compact filters were

introduced by Gaitonde and Visbal [28]. These compact

filters are applied on the components of the computed

solution vector. Denoting by f, the computed value, the
filtered value bf is obtained by solving the system
afbfj�1 þ

bfj þ af bfjþ1 ¼
XN

n¼0

an

2
ðfjþn þ fj�nÞ. (3.16)
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The compact filter of Eq. (3.16), which was proposed in

Ref. [28], provides a 2Nth-order accurate formula on a

2N þ 1 point stencil. Application of the compact filter

makes possible high-resolution, low-diffusion numerical

solutions of flows without discontinuities. The coeffi-

cients an of the filter are functions of the filtering

parameter af . These coefficients for different order filters

are given in Table 2.

The filtering ability of the filters given by Eq. (3.16) is

determined by the transfer function in wavespace.

Therefore, the compact filters of Eq. (3.16) are referred

to from now on as spectral-type filters. The transfer

function for the spectral-type filter of Eq. (3.16) is

given by

SðoÞ ¼
PN

n¼0 an cos ðnoÞ
1þ 2af cos ðoÞ

. (3.17)

The parameter, af , which is in the range 0:5oafo0:5
determines the filtering properties. High values of the

parameter af yield less dissipative filters.

At the boundary points, the order of the filter must be

dropped in order to reduce the stencil size. It was

demonstrated [28] that the filtering ability of the low-

order filters could approximate the filtering performance

of high-order filters by varying the value of the filtering

parameter af . The variation of the spectral function of

Eq. (3.17) for constant value of the filtering parameter

af ¼ 0:45 for the second up to eighth-order filters is

shown in Fig. 7. The spectral function of Eq. (3.17) for

the second-, and eight-order filter is plotted in Fig. 8

for different values of the filtering parameter

af ¼ 0:45� 0:49. It is evident that as the value of the
filtering parameter af becomes larger low-pass filtering is

obtained even with the second-order filter.

Centered schemes with spectral-type filters are not

appropriate for computations of flows with shock waves

and other discontinuities. High-order accurate compu-

tation of transonic or supersonic flows with compact

centered schemes can be obtained with the application of

characteristic-based filters [1] described in the following

section.
Table 2

Coefficients for the spectral-type filter of Eq. (3.16)

F2 F4

a0 1
2
þ af 5

8
þ
3af
4

a1 1
2
þ af

1
2
þ af

a2 0 � 1
8
þ

af
4

a3 0 0

a4 0 0

a5 0 0

Order of accuracy 2nd 4th
3.6. Characteristic-based (ACM) filters

Characteristic filters of Yee et al. [1] can be applied

instead of spectral-type filters with implicit and explicit

methods for time discretization of Section 2. Character-

istic-based filters remove spurious oscillations and in

addition can be used for shock capturing. They can be

applied at every stage of an RK method or after each

Newton-type subiteration of an implicit-type time

integration scheme for flows with strong shock interac-

tions. For computational efficiency, however, the filter is

often applied at the end of the full RK step or at the final

update of an implicit time scheme.

Let Lf be the filter operator defined as

Lf ðF
n;GnÞi; j ¼

1

Dx
½eFn

iþ1=2; j �
eFn

i�1=2; j 


þ
1

Dy
½ eGn

i; jþ1=2 �
eGn

i; jþ1=2
, ð3:18Þ

where eFn

iþ1=2; j and
eGn

i; jþ1=2 are the dissipative numerical

fluxes of the filter operator to be discussed below. Then

the new time level nþ 1 (or next stage pþ 1 for implicit

schemes with subiterations) is defined as

Unþ1 ¼ bUnþ1
þ DtLf ðF

n;GnÞi; j , (3.19)

where the filter numerical fluxes eFn

iþ1=2; j and Gn

i; jþ1=2

are evaluated at bUnþ1
. The simplest form for Lf is the

linear filter proposed by Gustafsson and Olsson [113]

where a switch similar to that of Harten [35] was used.

The filter numerical flux may be written in the form

similar to TVD schemes, as in [72,114–116] as followseFiþ1=2; j ¼
1
2
½Fiþ1; j þ Fi; j þDi; j 
, (3.20)

where 1
2
½Fiþ1; j þ Fi; j 
 is the central difference portion of

the numerical flux, which is substituted by a high-order

centered approximation in the schemes proposed by Yee

et al. [1], and the term Di; j is the nonlinear dissipation.

For characteristic-based methods, e.g. methods where

the dissipative term is evaluated in characteristic

variable space Di; j ¼ Riþ1=2; jFiþ1=2; j where Riþ1=2; j is

the right eigenvector of the flux Jacobian matrix qF=qU .
F6 F8 F10

11
16
þ
5af
8

93
128
þ
70af
128

193�126af
256

15
32
þ
17af
16

7
16
þ
18af
16

105�302af
256

�3
16
þ
3af
8

�7
32
þ
14af
32

�15þ30af
64

1
32
�

af
16

1
16
�

af
8

45�90af
512

0 �1
128
þ

af
64

�5þ10af
256

0 0 1�2af
512

6th 8th 10th
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Fig. 7. Transfer function for filters of different order for

constant value of the filtering parameter Af ¼ 0:45.
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Fig. 8. Transfer function of the second and eighth-order filter

for different values of the filtering parameter Af .
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In order to introduce some upwinding the elements

of Riþ1=2 are computed at Roe’s approximate average

state.

The artificial compression method (ACM) of Harten’s

idea [35] was generalized in [1] to achieve a low-

dissipative high-order shock-capturing scheme by nearly

maintaining the accuracy to high order. The ACM filter

numerical flux eFiþ1=2; j in Ref. [1] has the form

eFn

iþ1=2; j ¼
1
2

Riþ1=2F
n

iþ1=2, (3.21)
where Riþ1=2 is the right eigenvector matrix of the flux

Jacobian A ¼ qF=qU at Roe’s approximate average

state and the elements of the matrix Fn

iþ1=2 denoted by

fnl

iþ1=2 are

fnl

iþ1=2 ¼ kyl
iþ1=2f

l
iþ1=2. (3.22)

The function kWl
iþ1=2 in Eq. (3.22) is the key

mechanism for achieving high accuracy of the fine scale

flow structures as well as capturing of shock waves in a

stable manner. The elements of Fn

iþ1=2 can be identified

as the nonlinear dissipation portion of a TVD, ENO, or

WENO scheme with the exception that they are

premultiplied by kWiþ1=2. Yee et al. [1] defined Fn

iþ1=2

using a TVD scheme. Garnier et al. [36], on the other

hand, defined Fn

iþ1=2 using the dissipative part of ENO

or WENO schemes.

The main disadvantage with characteristic-based

filters is that the parameter k is problem depended.

Numerous simulations and tests were carried out by Yee

et al. [1] for different flows. It was found, however, that

different examples require a different value of k. The
suggested range of k in [1] was 0:03pkp2 where larger
values of k are used for flows with discontinuities and
smaller values are required for smooth flows including

complex features, such as vortex convection or vortex

pairing. In order to remedy this problem, Sjogreen and

Yee [117] used a regularity estimate obtained from the

wavelet coefficients of the solution to obtain a better

value for the filter sensor.

The function yl
iþ1=2 in Eq. (3.22) is the Harten

switch. This switch for a general 2mþ 1 points scheme

is given by

yl
iþ1=2 ¼ maxð

byi�mþ1; . . . ;byiþmÞ, (3.23)

byl

i ¼
jel

iþ1=2j � je
l
i�1=2j

jel
iþ1=2j � je

l
i�1=2j

�����
�����
p

. (3.24)

In Eq. (3.24), p is a second parameter that determines

the performance of the filter and can be varied to better

capture the particular physics instead of varying k. The
higher the parameter p the less is the amount of

numerical dissipation added to the numerical solution.

For pX1 the order of accuracy of the dissipation term is

essentially increased. For all numerical examples in

[1,117], a constant value p ¼ 1 was used. Furthermore,

in order to keep the stencil of the scheme compact the

Harten’s switch was computed as

yl
iþ1=2 ¼ maxðy

l
i ; y

l
iþ1Þ. (3.25)

In Eq. (3.24), el
iþ1=2 are elements of R�1iþ1=2ðUiþ1 �UiÞ

where R�1iþ1=2 is the left eigenvector of the flux Jacobian

qF=qU that transforms back to the conservative

variable space the filter operator.
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The elements fl
iþ1=2 in Eq. (3.20) are evaluated based

on TVD schemes[115,116,118]. Choosing Harten–Yee

upwind TVD for example obtain

fl
iþ1=2 ¼

1
2
cðcl

iþ1=2Þðg
l
iþ1Þ � cðcl

iþ1=2 þ gl
iþ1=2Þe

l
iþ1=2,

(3.26)

where

gl
iþ1=2 ¼

1

2
cðcl

iþ1=2Þ ¼

ðgl
iþ1 � gl

iÞ=el
iþ1=2 el

iþ1=2a0;

0 el
iþ1=2 ¼ 0:

8<:
(3.27)

cðcl
iþ1=2Þ ¼

jcl
iþ1=2j jcl

iþ1=2jXd1;

cl
iþ1=2 þ d21
2d1

jcl
iþ1=2jod1:

8>><>>: (3.28)

In Eq. (3.26), el
iþ1=2 are the characteristic speeds of the

flux Jacobian matrix qF=qU evaluated at the Roe’s

average state [119], c is an entropy correction [120]

where 0od51, and gl
i is a limiter function.

Examples of commonly used limiter functions are:

ðaÞ gl
j ¼ minmodðe

l
j�1=2; e

l
jþ1=2Þ,

ðbÞ gl
j ¼ ðe

l
jþ1=2e

l
j�1=2 þ je

l
jþ1=2e

l
j�1=2jÞ=ðe

l
jþ1=2 þ el

j�1=2Þ,

ðcÞ gl
j ¼ fe

l
j�1=2½ðe

l
jþ1=2Þ

2
þ d2
 þ el

jþ1=2½ðe
l
j�1=2Þ

2
þ d2
g=

½ðel
jþ1=2Þ

2
þ ðel

j�1=2Þ
2
þ 2d2
,

ðdÞ gl
j ¼ minmodðe

l
j�1=2; 2el

jþ1=2;
1
2
ðel

jþ1=2 þ el
j�1=2ÞÞ,

ðeÞ gl
j ¼ S max½0;minð2jel

jþ1=2j;S � e
l
j�1=2Þ,

minðjel
jþ1=2j; 2S � el

j�1=2Þ
;

S ¼ sgnðel
jþ1=2Þ.

Here d2 is a small dimensionless parameter to prevent
division by zero and sgnðel

jþ1=2Þ ¼ sgnðe
l
jþ1=2Þ. In prac-

tical calculations 10�7pd2p10�5 is a commonly used
range. For el

jþ1=2 þ el
j�1=2 ¼ 0; gl

j is set to zero in (b).

The minmod function of a list of arguments is equal to

the smallest number in absolute value if the list of

arguments is of the same sign, or is equal to zero if any

arguments are of opposite sign.

To facilitate computer implementation the entropy

correction cðcÞ in Eq. (3.28) is evaluated as

cðcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2 þ d2Þ

q
; d ¼ 1

16
(3.29)

and gl
iþ1=2 in Eq. (3.27) is computed by

gl
iþ1=2 ¼

cðcl
iþ1=2ÞðW

l
iþ1=2 � gl

iÞe
l
iþ1=2

2ðcl
iþ1=2Þ

2
þ e

; e ¼ 10�7. (3.30)
In addition, the switch in Eq. (3.24) is modified to avoid

division by zero

yl
i ¼

j jel
iþ1=2j � je

l
i�1=2j j

jel
iþ1=2j þ je

l
i�1=2j þ e

. (3.31)

Recently, Sjogreen and Yee [121] proposed further

improvements to the estimation of the filter numerical

flux introducing regularity estimates from the wavelet

coefficients of the solution. This recent development is as

follows. Considering the lth element of the filter

numerical flux function ef l

iþ1=2 (see Eq. (3.22)) as the

product of the sensor ol
iþ1=2 and a nonlinear dissipation

function fl
iþ1=2ef l

iþ1=2 ¼ ol
iþ1=2f

l
iþ1=2 (3.32)

the sensor ol
iþ1=2 that in Eq. (3.24) is modified while the

numerical dissipation portion fiþ1=2 of Eq. (3.26) of

Harten and Yee TVD scheme remains the same.

3.6.1. ENO and WENO ACM filters

A recent improvement of ACM filters is application of

ENO and WENO procedure in the evaluation of the

dissipative fluxes [36]. The dissipative numerical fluxes

for TVD-MUSCL schemes (see Eq. (3.21)) are

eFnM

iþ1=2 ¼
1
2

Riþ1=2F
nM

iþ1=2, (3.33)

where the elements fl
iþ1=2 of F

nM

iþ1=2 are given by

fl
iþ1=2 ¼ kWl

iþ1=2jc
l
iþ1=2je

l
iþ1=2, (3.34)

where

el
iþ1=2 ¼ R�1iþ1=2ðU

R
iþ1=2 �UL

iþ1=2Þ

and cl
iþ1=2 are the eigenvalues of the flux Jacobian

UR
iþ1=2, UL

iþ1=2 are the upwind-biased interpolation of the

neighboring Ui values with the slope limiters imposed.

The MUSCL approach can be extended to rth order

accurate ENO schemes of Ref. [1] as follows. The

dissipative numerical flux is written as

eFnENO

iþ1=2 ¼ Riþ1=2F
nENO

iþ1=2, (3.35)

where the element fl
iþ1=2 of F

nENO

iþ1=2 is obtained from the

dissipative part of the ENO scheme, which results (see

Section 4) by subtracting an mth-order accurate,

centered scheme from an rth-order accurate ENO

approximation as

fl
iþ1=2 ¼ yl

iþ1=2

Xr�1
p¼0

cr
k;pR�1iþ1=2Fi�rþ1þkþp

 

�
Xm�1
p¼0

cm
m
2
;pR�1Fi�mþ1þm

2
þp

!
, ð3:36Þ

where cr
k;p are the reconstruction coefficients of the ENO

reconstruction, and k is the stencil index selected among
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the r candidate stencils Sk that are defined as

SðkÞ ¼ fI i�rþkþ1; . . . ; I i; . . . ; I iþkg

¼ ðxi�rþkþ1; . . . ; xi; . . . ; xiþkÞ; k ¼ 0; . . . ; r� 1.

ð3:37Þ

The mth-order accurate centered scheme is a sub-

class of ENO coordinate stencils with k ¼ m=2
and m even. All choices mX2l, l ¼ 1; 2; . . . are valid
for the construction of error-dissipative terms. How-

ever, in order to keep the accuracy of the base

scheme the same with order of the dissipative terms

m ¼ q since larger values of m do not improve

the formal accuracy and increase the computing

cost.

An increased order of accuracy can be achieved by

exploiting the WENO idea in the construction of the

fl
iþ1=2 dissipative terms as follows:

fl
iþ1=2 ¼

Xr�1
k¼0

ok yl
iþ1=2

Xr�1
p¼0

cr
k;pR�1iþ1=2Fi�rþ1þkþp

 "

�
Xm�1
p¼0

cm
m=2;pR�1iþ1=2Fi�mþ1þm=2þp

!#
. ð3:38Þ

The WENO approach (see Section 4) achieves

ð2r� 1Þth-order of accuracy by performing linear,

convex combination with weights ok of the r possible

rth order ENO stencils.

3.7. Finite-volume compact difference-based schemes

Finite-volume (FV) methods offer several advantages

compared to finite-difference (FD) formulation espe-

cially for the numerical simulation of nonlinear phe-

nomena. The advantage of the FV formulation with

respect to the FD formulation is that the former is based

on the integral form of the conservation laws. As a

result, flux conservation is enforced even on arbitrary

meshes since the fluxes collapse telescopically by

construction. Furthermore, analysis of the finite-volume

methods shows that they have superior performance

in the high wavenumber range and that they exhibit

lower truncation error. The main disadvantage

of the FV formulation, especially when high-

order accuracy is required, is the significantly higher

computing cost of the FV methods compared to FD

formulation.

For complex aerodynamic simulations, there is little

place left for tuning parameters that regulate accuracy

and stability of the computed solutions. The upwind-

differencing schemes used in CFD, although computa-

tionally more intensive than finite differences were

proven unsurpassed in their computational accuracy

and robustness. The properties of these schemes are well

justified and explained only for one-dimensional flows.

Application of upwind-differencing schemes in the FV
context for two- and three-dimensional flows, similar to

the FD formulation, is however based on one-dimen-

sional physics. Namely, the multidimensional FV for-

mulation is based on the solution of the one-dimen-

sional Riemann problem that describe the interaction

between two fluid cells by finite-amplitude waves normal

to their interface. The inadequacy of this approach

however clearly shows up, irrespective of the order of

accuracy, when the numerical solution contains shocks

or shear waves not aligned with the grid. Roe [122]

recognized this deficiency as early as 1985. The remedy

to one-dimensional upwinding is incorporation of

genuinely multidimensional physics in upwind algo-

rithms [123,124]. Numerous efforts were made in the

past to apply Riemann solvers in several physi-

cally appealing directions. Closer to the genuinely

multidimensional approach is the work of Rumsey

et al. [125] where multidimensional wave models

were developed that minimize wave strengths and

require only two inputs states, just as a classic high-

order solver.

In support to quasi-, and genuinely multidimensional

approaches, aimed at putting better physics in to

interface fluxes some investigators have dedicated efforts

in achieving more accurate process of flux calculation by

improving Godunov scheme [126] in the reconstruction

step that is the most important task in the solution

process. Piecewise linear approximations based on

adjacent values of the solution that do not produce

spurious oscillations near discontinuities and regions of

high solution gradients are obtained with the MUSCL

schemes developed by van Leer [127,128] and/or

quadratic approximations by Colella and Woodward

[129]. Furthermore, for applications on structured-type

grids high-order accuracy may be introduced into the

finite-volume formulation performing reconstruction by

means of primitive function as is described in the next

section.

The solution procedure of the multidimensional

problem with the finite-volume method consists of the

following steps:
1.
 Reconstruction: Given the average values of the

solution, reconstruct a polynomial approximation

to the solution in each control volume. This

polynomial may vary discontinuously from control

volume to control volume.
2.
 Flux quadrature: Using the piecewise polynomial

reconstruction of the solution approximate the flux

integral or in the discrete form the summation of

fluxes by numerical quadrature.
3.
 Evolution and projection: simply referred to as

evolution where a Riemann solver and an appro-

priate temporal discretization scheme are used to

evolve the numerical approximation of the flux

integral.
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Barth [130] describes in detail several reconstruction

methods. Among them the k-exact reconstruction

approach of Barth and Frederickson [131] is most

commonly used for high-order accurate numerical

solutions with the finite-volume method.

High-order (fourth- and sixth-order) compact differ-

ence-based schemes were developed by Gaitonde and

Shang [132] in the finite volume context. The formula-

tion of these schemes utilizes the primitive function

approach. Optimization of the schemes for better linear

wave propagation characteristics is performed by mini-

mizing dispersion and isotropy errors. The one-dimen-

sional advection equation is used as the prototype for

scheme development.

qu

qt
þ

qf

qx
¼ 0; f ¼ cu; c40. (3.39)

For equally spaced mesh Dx ¼ h the finite-volume

formulation is

h
qu

qt
þ f u xþ

h

2
; t

� �� �
� f u x�

h

2
; t

� �� �� �
¼ 0,

(3.40)

where u is the cell average

u ¼
1

h

Z xþh=2

x�h=2
udx. (3.41)

A mesh is introduced (see Fig. 9) with cells

1; 2; . . . ; i; . . . ;N and cell interfaces 1=2; 3=2; . . . ;
i � 1=2; i þ 1=2; . . . ;N þ 1=2. The discrete approxima-
tion of Eq. (3.40) on this mesh is

qui

qt
þ
1

h
½bf iþ1=2 �

bf i�1=2
 ¼ 0, (3.42)

here bf is the numerical flux function approxi-

mating f with reconstructed values buiþ1=2 at the cell

interfacesbf iþ1=2 ¼
bf ðui�1; ui; uiþ1Þ ¼

bf ðbuiþ1=2Þ. (3.43)

The order of accuracy, k, is introduced in Eq. (3.43) as

bf ðbuiþ1=2Þ ¼ f ðuiþ1=2Þ þ Oðhk
Þ. (3.44)
Ni

i i+1i-1

1 2 N-1

i-1/2 i+1/2∆x = h

Fig. 9. One-dimensional finite volume mesh.
The crucial step in this finite-volume formulation is the

reconstruction, e.g. approximation of the pointwise

quantity buiþ1=2 at the cell interfaces to the desired

accuracy using known average values at the ui cell

centers so that the accuracy requirement of Eq. (3.44) is

satisfied, e.g. determine buiþ1=2 such thatbuiþ1=2 ¼ uiþ1=2 þ Oðhk
Þ. (3.45)

The first step for the solution of this reconstruction

problem is to form a primitive function U of uðxÞ

defined as

U ¼

Z x

0

uðxÞdx. (3.46)

Then (see Section 5 for more details)

uiþ1=2 ¼ ui�1=2 þ uih; i ¼ 1; . . . ;N (3.47)

and the desired point values buiþ1=2 are obtained by

buiþ1=2 ¼
dU

dx
þ Oðhk

Þ. (3.48)

Using a three- or five-point compact scheme for the

evaluation of U 0 ¼ dU=dx (see Section 3.1) one obtains

fourth or sixth order accuracy for the evaluation ofbuiþ1=2.

3.8. Results with ACM filters

Application of the ACM filters with discretizations

obtained from fourth- and sixth-order accurate in space

compact schemes showed good performance [1] for long

time convection of isentropic vortices. Numerous

examples presented in [1] demonstrate the superior

performance of high-order discretizations with ACM

filters. The effect of parameters, which are involved in

the filter (see Eqs. (3.22) and (3.24)), on the performance

of the ACM filter was tested extensively.

The first complex flow problem considered in [1] is

vortex pairing in time-developing mixing layer. The base

parallel flow, u ¼ tanhð2yÞ=2, is disturbed with a normal
velocity perturbation v0 given by

v0 ¼
X2
k¼1

ak cosð2pkx=Lx þ fkÞe
�y2=b,

where Lx ¼ 30, b ¼ 10, a1 ¼ 0:01, f1 ¼ p=2, and

a2 ¼ 0:05, f2 ¼ �p=2. Fig. 10 shows the temperature
field obtained from fourth order in space and time

computation with the ACM filter at t ¼ 40, 80, 120 and

160. This computation was performed on a fine 201�

201 stretched mesh with k ¼ 0:7 and the recommended
value of the parameter d ¼ 1

16
was used.

The effect of the ACM filter on the resolution of the

computed solution is shown in Fig. 11. It appears that

higher resolution is obtained with the ACM filter and

the advantage of using high-order methods for the

computation of complex flow features is evident. This
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Fig. 10. Four stages in the vortex pairing, at times t ¼ 40, 80, 120, 160, showing the temperature contours for a 201� 201 grid with

k ¼ 0:7 for the nonlinear fields and k ¼ 0:35 for the linear fields using ACM44.
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Fig. 11. Effect of order of accuracy on TVD methods (TVD22, TVD44, and TVD66), compared with the ACM44 solution at t ¼ 160,

illustrated by temperature contours at t ¼ 160 for a 101� 101 grid.
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latter effect is further demonstrated in Fig. 12 where

increase of the order of accuracy with increasingly

higher order base schemes results into crisper resolution

of fine flow features in the vortex region while the

resolution of smooth flow remains the same. The effect

of the limiter is shown in Fig. 13 where four different

limiters were tested with the same ACM44 scheme. The

effect of the smoothing parameter d in Eq. (3.27) was
also investigated. The computations of Fig. 14, for
example, demonstrate that the value of d cannot

be reduced very much without introducing spurious

oscillations.

Another example used in [1] was the shock wave

impingement on a spatially evolving mixing layer. The

mixing layer was again generated with a hyperbolic

tangent profile with u1 ¼ 3 and u2 ¼ 2 and perturbed in

the normal to the main flow direction. A strong oblique

shock at b ¼ 12� impinged on the shear layer and the
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Fig. 12. Effect of order of accuracy on ACMmethods (ACM22, ACM44, and ACM66) at t ¼ 160 for a 101� 101 grid compared with

the reference solution (ACM44, 201� 201 grid) using k ¼ 0:7 for the nonlinear fields and k ¼ 0:35 for the linear fields.
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Fig. 13. Effect of flux limiters in the ACM44 scheme on the solution resolution, illustrated by temperature contours at t ¼ 160.
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flow after the interaction remained supersonic through-

out up to the outflow boundary. The main features of

the computed flow field with the ACM44 method

(fourth-order accurate for the inviscid terms plus

fourth-order accurate in space viscous terms) is shown

in Fig. 15. The effect of the order of accuracy is shown in

Fig. 16 for computations obtained with second-, fourth-

and sixth-order accurate schemes. Similarly to the
simple shear layer case, the effect of the parameter d in
Eq. (3.27) on the stability is shown in Fig. 17.

A viscous shock tube problem was considered in [36].

Computed flow fields with different base schemes and

grid densities are shown in Fig. 18. It is demonstrated

that the centered schemes with ACM filter reach the

same resolution and solution quality as the well-

established WENO schemes. Comparisons of solutions
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Fig. 14. Effect of d, ((smu)2) in the ACM44 scheme on the solution resolution, illustrated by temperature contours at t ¼ 160.
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Fig. 15. The reference solution for the shock–shear-layer interaction problem at t ¼ 120.
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computed with finer and finer meshes and evaluation of

the ACM sensor using wavelets shown in Fig. 19

demonstrate that at all grid densities the performance

is very good. For comparison, computations with the
original ACM sensor of Eq. (3.27) are shown in Fig. 20.

Comparisons of the computed density distribution on

the wall obtained from numerical solutions with

different methods is shown in Fig. 21.
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Fig. 18. Grid refinement comparison of ACM66-RK4 and WENO5-RK4 for Re ¼ 200. Density contours. (a) ACM66-RK4, 250�

125 grid; (b) WENO5-RK4, 250� 125 grid; (c) ACM66-RK4, 500� 250 grid; (d) WENO5-RK4, 500� 250 grid; (e) ACM66-RK4,

1000� 500 grid; (f) WENO5-RK4, 1000� 500 grid.

Fig. 19. Grid refinement of WAV66-RK4 for Re ¼ 1000.

Density contours, 2000� 1000 grid.
Fig. 20. Grid refinement of ACM66-RK4 for Re ¼ 1000.

Density contours, 2000� 1500 grid.
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High-order accurate solutions with ACM filters were

also obtained in [117] for more complex problems

containing finite-rate chemistry. The flow field resulting

from the interaction of a planar Mach 2 shock in air

with a circular zone of hydrogen was considered.

The computed flow field at different times is shown in

Fig. 22. The improvements with grid refinement
obtained for the computation of the flow with very

complex flow features is shown in Fig. 23. For

comparison, in Fig. 24 the computed flow fields with

the WENO fifth-order accurate scheme on the same

meshes is shown. It appears that the high order in space-

centered scheme with the ACM filter yields the same

solution quality as the WENO scheme.
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Fig. 21. Density along lower wall on different grids for

Re ¼ 1000. WAV66-RK4.

Fig. 22. Density contours of ACM66-RK4 on a 500� 250 grid.

Fig. 23. Grid refinement of the ACM66-RK4 scheme. Hydro-

gen mass fraction contours at time 60ms.

Fig. 24. Grid refinement of the WENO5-RK4 scheme. Hydro-

gen mass fraction contours at time 60ms.
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3.9. Results with compact schemes and filters

Application of compact centered schemes found

widespread application in the numerical simulation of

noise sources from compressible flow such as vortices

and jets. Several examples of computations obtained

with compact schemes are presented in the following

paragraphs. The far-field sound generated by compres-

sible co-rotating vortices was computed by the numer-

ical solution of the two-dimensional, compressible

Navier–Stokes using the sixth-order compact scheme

to evaluate the spatial derivatives [133]. Time marching
was performed with the fourth-order Runge–Kutta

scheme. The computational domain extended to two

acoustic wavelengths in all directions. A major numer-

ical consideration in the aeroacoustic computations of

[133] was the choice of boundary conditions. The

appropriate boundary conditions for the analysis

of flows in free space are non-reflecting boundary

conditions which allow waves to freely leave the

domain. The zeroth-order boundary conditions of

[134] were used for the computations. It was found in

[133] that the combination of spatial and temporal

schemes with these boundary conditions has negligible
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Fig. 25. The far-field pressure (ambient removed) at

tc0=R ¼ 185. The contour levels are from P=ðr0c
2
0Þ ¼ 4�

10�5 with DP=ðr0c
2
0Þ ¼ 0:05� 10

�5. The ‘cross’ pattern is a

plotting illusion caused by the high grid densities near the x-

and y-axis.

Fig. 26. Far-field pressure traces at (a) r=l ¼ 1
2 and (b) r=l ¼ 2

showing the results of the simulation (—), and the prediction of

Mohring’s equation (- - -). Both measurement points are located

on the positive y-axis.
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numerical damping and preserves the physical pro-

perty that, in the absence of viscosity waves pro-

pagate unattenuated. For the vortices separated by

distance 2R, the initial vorticity distribution was

Gaussian as

o ¼ 3:57
U0

r0
e�1:25ðr=r0Þ

2

with circulation G0 ¼ 2pð0:7Þ�1U0r0 and r0 the distance

from the vortex core where the maximum Mach number

is attained for each vortex. The numerical results of [133]

were compared with exact results from the acoustic

analogue by Mohring [135]. The computed far-field

pressure is shown in Fig. 25. Comparisons of the

computed solutions [133] with the theoretical predic-

tions of Mohring [135] are shown in Fig. 26. The

agreement of the computations with the theory for the

far-field sound from compact low-Mach-number flows is

very good.

A second example of sound generation computation is

the sound in a mixing layer [136]. The sound generated

by vortex pairing in a two-dimensional compressible

mixing layer was computed with DNS of the Navier–

Stokes equations for the near-field and the acoustic field.

Fourth- and sixth-order compact schemes were used for

the computation of the derivatives. Time marching

was performed with the fourth-order Runge–Kutta

method. The computed acoustic field [136] is shown in
Fig. 27 for different frequencies. A comparison of

the computed results with an acoustic analogy is shown

in Fig. 28.

A third example of noise source calculation from free

shear flow is the investigation of sound generation

mechanisms in a MachM ¼ 0:9, Re ¼ 3600 turbulent jet

[137]. The numerical solution of the governing equations

was obtained for a cylindrical coordinates system. The

azimuthal derivatives were computed with Fourier

spectral methods and the radial and axial derivatives

were computed with sixth-order compact finite differ-

ences. Again the fourth-order Runge–Kutta method was

used to advance the solution in time. Some examples

from the computation of [137] are presented. The

instantaneous contours of vorticity are shown in Fig.

29. A visualization of the sound field is shown in Fig. 30.

Comparisons of the computations with measurements

are shown in Figs. 31–33. A comparison of the

computed data with Lighthill’s equation is shown in

Fig. 34. Further examples of jet noise prediction with

explicit and compact finite-difference schemes can be
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Fig. 27. Contours of the real part of the DFT of the dilatation away from the sheared region for several frequencies: (a) f =4, (b) f =2,
(c) f, (d) 3f =2.
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found in recent publications [138–142] and references

therein.

Sound generation flow low Mach number flow over a

cylinder was computed by DNS of the two-dimensional

Navier–Stokes equations [143]. The governing equations

were again solved with a sixth-order accurate compact

scheme and time integration was performed with the

fourth-order accurate Runge–Kutta method. Exam-

ples from the computations of [143] are shown in

Figs. 35–38. Fig. 35 shows the time-dependent vorticity

field. Fig. 36 shows the development of the fluctuating

pressure. Different views of pressure field are shown in
Fig. 37. The fluctuating pressure of Fig. 37b clearly

shows the dipole radiation pattern of the sound

generated by the cylinder unsteady wake. Comparisons

of the DNS with the theory are shown in Fig. 38. The

agreement with the theory of Curle is very good. Further

applications of high-order finite-difference method to

aeroacoustics can be found in recent publications

[144–146] and references therein.

Comparisons of the numerical solution obtained with

fourth-order accurate centered schemes with other

solutions obtained by second-order centered schemes

and upwind methods were carried out in [147]. It was
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Fig. 28. Comparison of the magnitude of the acoustic waves (dilatation) predicted by solving the acoustic analogy (solid lines) and

from the DNS (open circles).
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Fig. 29. Instantaneous contours of vorticity magnitude: levels

are or0=Uj ¼ 0:35, 1, 2, 3, 4 with lighter contours representing
larger values. Peak vorticity magnitude (not shown) was

or0=Uj ¼ 11.

Fig. 30. Visualization of the far-field sound: black is Y ¼
r � uo� 0:0005a0=r0 and white is Y40:0005a0=r0. The gray

scale varies continuously between these extrema. The jet is

visualized with contours of vorticity magnitude.
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found that the discretization using higher-order approx-

imation for all terms was substantially more accurate

than the others. It produced less than two percent

numerical error in lift and drag components on grids

with less than 13,000 nodes for subsonic cases and less

than 18,000 nodes for transonic cases. It was also

concluded [147] that the higher-order discretization
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Fig. 31. Second moments of velocity: �, x ¼ 20r0; B, x ¼ 25r0; &, x ¼ 30r0; —, low-Mach-number experimental data from

Panchapakesan and Lumley [268]; and - - - -, low-Mach-number experimental data from Hussein et al. [269]. The Panchapakesan and

Lumley [268] profiles were digitized and re-plotted from the least-squares fits in their publication; the Hussein et al. [269] profiles are the

curve fits they provided. The simulation data were averaged in time for the entire simulation history and in space over a streamwise

band of width Dxave ¼ 2r0.
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produces solutions of a given accuracy much more

efficiently than the others.

Shedding past a cylinder at ReD ¼ 1000 was com-

puted in [148] with the second- and sixth-order compact

schemes with tenth order spectral type filters (CD6F10

schemes). It was found that the higher-order scheme is

well behaved for this general configuration, which

was discretized with a high-aspect-ratio, stretched mesh.

Fig. 39 shows that even at this low Reynolds number,

results with the higher-order compact algorithm are

superior in preserving the vortex street behind the

cylinder. A quantitative comparison made at RD ¼ 100

with other highly resolved computations displayed good

agreement the Strouhal number and maximum lift and

drag coefficients for the high-order schemes. Preliminary

direct numerical simulations of the three-dimensional

wall-jet transition process are performed in [148] with

the implicit time-integration scheme on a mesh of size

230� 125� 101 with both the second and CD6F10

schemes. In the computations the jet is forced at the

inflow plane with a two-dimensional forcing function.

Fig. 40 shows the computed instantaneous flow struc-

ture in terms of contours of vorticity magnitude on a

plane parallel to the plate at a distance of 1:3h.
Spiral vortex breakdown above a slender delta wing

with a sweep angle of 75� at 32� angle of attack was also

computed in [148]. The free stream Mach number was

M ¼ 0:2, and the Reynolds number based on centerline
chord is ReC ¼ 9200. Fig. 41a and b show the

instantaneous y component of vorticity on a vertical

plane cutting through the vortex core for the second-

order method. At this angle of attack, the breakdown

location is highly sensitive to details of the numerical

simulation. Thus, on the coarse mesh the second-order

scheme results in a premature break down of the vortex.

By contrast, the CD6F10 solution shown in Fig. 41c

displays a breakdown location similar to the second-

order results on the fine mesh. The second-order method

on the coarser mesh (Fig. 41a) shows relatively little

detail with only two smeared concentrations of azi-

muthal vorticity in the vortex wake. On the other hand,

CD6F10 results (Fig. 41c) exhibit a much richer

structure corresponding to a stronger, tightly wound

spiral in far better agreement with the grid-converged

results of Fig. 41b obtained with the second order

method with a fine grid.

Several test of vortex convection were performed in

[149]. It was shown that for long-time propagation it is
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Fig. 33. Far-field pressure spectrum at a ¼ 30: —, present
simulation; . . . . . ., measurements of Stromberg et al.

Fig. 34. Comparison of dilatation on a ray from x ¼ 18r0 and

inclined at 45� from the jet axis: —, direct numerical simulation;

- - - -, Lighthill’s equation.

Fig. 35. Time development of a vorticity field. M ¼ 0:2,
Re ¼ 150. The contour levels are from omin ¼ �1:0 to omax ¼
1:0 with an increment of 0.02: ____, o40; – – –, oo0.
(a) t ¼ 1930, (b) t ¼ 1945.

Fig. 32. Overall sound pressure level (and acoustic intensity in

brackets) directivity on an arc at 60r0 from the nozzle and with

a measured from the jet axis: ——, D ~pcurleRe ¼ 3600 present

study; �, Re ¼ 3600, Stromberg et al. [270] experimental data;

�, Re ¼ 2� 10
5, Mollo-Christensen et al. [271] experimental

data; n, Re ¼ 6� 10
5, Lush [272] experimental data (adjusted

by 12 dB from 240 jet radii to 60).
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important to compute the metric quantities with the

same high order of accuracy as the base scheme for the

convective terms. The performance of the high-order
approach for a non-trivial column vortex convection on

a 3-D dynamic mesh was considered in [149]. The axis of

the vortex placed along z ¼ 0. Inviscid calculations were

performed with the E2 and C6 schemes using the RK4

method and a time step Dt ¼ 0:002. A cross-section of

the vortex on a z ¼ constant plane at T ¼ 3:25 is shown
in Fig. 42a. At this instant, the grid has already

experienced more than three cycles of the imposed

oscillation with frequency o ¼ 1. As the contours of
velocity magnitude indicate, despite the significant

unsteady mesh deformations, the high-order method is

capable of preserving the axisymmetric character of the

vortex even on this relatively coarse discretization
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Fig. 36. Time development of a fluctuation pressure field, D ~p.
M ¼ 0:2, Re ¼ 150. The contour levels are from D ~pmin ¼
�0:1M2:5 to D ~pmax ¼ 0:1M2:5 with an increment of

0:0025M2:5. —, D ~p40; - - - -, D ~po0. (a) t ¼ 1925, (b)

t ¼ 1930, (c) t ¼ 1935, (d) t ¼ 1940, (e) t ¼ 1945, (f) t ¼ 1950,

(g) t ¼ 1955, (h) t ¼ 1960.

Fig. 37. Three different views of a pressure field at M ¼ 0:2,
Re ¼ 150; —, positive pressure; – – – –, negative pressure. (a)

Total pressure, Dp, at t ¼ 2010, (b) fluctuation pressure, Dp0,

t ¼ 2010, (c) mean pressure, Dpmean.
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(approximately 10 points across the vortex). A compar-

ison of the computed and exact solutions is shown in

Fig. 42b in terms of the v component of velocity. The

C6F10 results are observed to be in excellent agreement

with the theoretical answer. This case demonstrates

the advantage of the high-order methodology over

standard low-order approaches even for 3-D applica-

tions in which the mesh is subjected to severe dynamic

deformation.
Further demonstration of the high-order, dynamic-

mesh technique was carried out in [149] with the

simulation of the aeroelastic interaction arising from
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Fig. 38. Comparison of pressure distribution between DNS and Curle’s solutions.M ¼ 0:2, Re ¼ 150, t ¼ 2000. The contour levels are

from �0:1M2:5 to 0:1M2:5 with an increment of 0:0025M2:5. —, Positive pressure, - - - -, negative pressure. (a) Dp (DNS), (b) D ~p (DNS),
(c) D ~pM (DNS), (d) D ~pD

curle þ Dpmean, (c) D ~pD
curle, (f) D ~pcurle.
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viscous laminar flow over a flexible surface. A schematic

of the configuration considered is shown in Fig. 43a. The

free-stream Mach number and Reynolds number (based

on panel length, L) were M ¼ 0:9 and Re ¼ 1:0� 10
5,

respectively. The computed boundary-layer thickness at

the leading-edge of the flexible panel was approximately

d ¼ 0:04L. The pressure in the cavity underneath the
flexible panel was assumed to be fixed at the free

stream value p1. The flow field was computed using

the sixth-order scheme (C6) and the second-order,

implicit Beam-Warming method (with D ¼ 0:01 and

four subiterations). At each subiteration of the implicit

time-marching method, the shape of the deforming

panel is updated by the structural solver. Based on
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the new boundary coordinates, the fluid dynamic

mesh is evolved by propagating the panel deforma-

tions into the entire field. Following initial transients,

a limit-cycle-oscillation with an approximate non-

dimensional frequency St ¼ fL=u1 ¼ 1:62 was achieved
by the combined fluid/structural system. A representa-

tive plot of the instantaneous panel deflection is

shown in Fig. 43b. From this and many other

instantaneous realizations of the panel shape (not

shown), it became apparent that the panel dyna-

mics comprises a first-mode mean downward deflec-

tion upon which a high-mode, high-frequency vertical

fluctuation is superimposed. These high-frequency fluc-
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Fig. 39. Computed Karman vortex street behind cylinder at

ReD ¼ 1000.
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Fig. 40. Vorticity magnitude contours on y/dimensional wall-jet
tuations result in a significant acoustic radiation

pattern above the vibrating panel, shown in Fig. 43c in

terms of a snapshot of the instantaneous pressure.

Corresponding contours of vorticity are shown in

Fig. 43d, with an enlarged scale (by a factor of 8) in

the y direction for the purpose of clarity. Vorticity waves

are clearly visible in the boundary layer and appear to

roll up and interact with the wall resulting in the

formation of secondary incipient separation regions.

High-order accurate computations of compressible flows

with centered schemes were carried out in numerous

recent publication. See for example, [150–154], for more

details.
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Fig. 41. Azimuthal component of vorticity on vertical plane

passing through the core of the broken-down vortex.
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Fig. 42. Computed vorticity and comparison with the exact solution for the convection of a vortex in a three-dimensional deforming
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4. ENO and WENO schemes

ENO and WENO schemes are high-order accurate

finite-difference or finite-volume numerical methods

designed for the solution of hyperbolic problems with

piecewise smooth solutions containing discontinuities.

The key idea of these methods is the design of the locally

smoothest stencil that avoids crossing discontinuities as

much as possible.
The ENO idea, proposed by Harten and Osher [155]

and Harten et al. [156], is the first successful attempt to

obtain no-mesh size-dependent (self-similar), uniformly

high-order accurate, yet essentially non-oscillatory

interpolation for piecewise smooth functions using an

adaptive local stencil that satisfies certain measures of

local smoothness. ENO offered significant improve-

ments over earlier approaches, which attempt to

eliminate or reduce spurious oscillations generated at
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Fig. 44. ENO rþ s ¼ k � 1 wide stencil for the kth order

accurate approximation of uiþ1=2 from cell average values ūi.
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discontinuities by the fixed stencil, second- or higher-

order accurate methods, which used artificial viscosity or

limiters.

ENO and WENO schemes were proven suitable for

CFD of compressible turbulence, aeroacoustics, and

other applications where the solution contains both

smooth but complex features and discontinuities.

Several of ENO and WENO applications shown at the

end of this section demonstrate the enhanced resolution

of these schemes and their potential to replace tradi-

tional methods in large-scale computations. The pre-

sentation of ENO and WENO schemes starts with a

review of interpolation and approximation theory used

with these schemes.

4.1. High-order reconstruction

A basic approximation problem encountered in the

numerical solution of hyperbolic conservation laws is to

obtain high-order (second-order accurate or higher)

reconstruction (finite-volume approximation) or conser-

vative approximation of the derivatives (finite-difference

approximation) from cell averaged or point values of the

state variables, respectively. Numerical algorithms for

conservation laws that have been extensively investi-

gated in the past three decades laid the foundation for

the development of modern schemes, [127,128,157]

including TVD schemes [72] and the piecewise parabolic

method [129] that reduce or eliminate spurious numer-

ical oscillations at discontinuities. In the following

sections, the basic ideas of ENO approximation and

reconstruction, and the conservative approximation of

the derivatives with an adaptive, smooth stencil, which

uses the smoothest possible data for the reconstruction,

are explained. Based on this idea, ENO and WENO

schemes have a distinct advantage over TVD schemes

that near every extrema, even smooth ones, degrade to

first-order accuracy to suppress any spurious numerical

oscillations. ENO schemes, on the other hand, which are

based on high-order accurate conservative approxima-

tions of derivatives (FD) or polynomial reconstructions

from the average state (FV), are high-order accurate and

essentially non-oscillatory up to the discontinuity; i.e.

the numerical oscillations, if any, decay with the order of

the truncation error.

The one-dimensional high-order approximation pro-

blem of a function from given cell average values is

described in Section 4.2. ENO obtains approximation

with polynomials. This polynomial approximation

procedure is the basis of finite volume ENO schemes

for arbitrary grid spacing in one dimension. The

conservative approximation of the derivative, which is

also based on the one-dimensional polynomial approx-

imation, is the basis of the finite-difference ENO

schemes and presented in Section 4.3. In the following

sections, the ENO and WENO reconstruction proce-
dures are presented. The implementation of ENO and

WENO schemes is given and recent improvements of

these schemes are discussed.

4.2. Approximation in one dimension

The basic information about polynomial interpolation

and approximation is reviewed. This background is

fundamental for the understanding of ENO interpola-

tion and other numerical methods. The presentation is

given in one space dimension. The formulation of the

basic approximation problem is as follows:

Given a mesh in the interval between a and b

a ¼ x1=2ox3=2o . . . xiþ1=2 . . .oxN�1=2oxNþ1=2 ¼ b

with subintervals or cells I i � ½xi�1=2; xiþ1=2
, cell centers

xi �
1
2
ðxi�1=2 þ xiþ1=2Þ and cell size Dxi � xiþ1=2�

xi�1=2; i ¼ 1; 2; . . . ;N, (see Fig. 44), consider the follow-
ing reconstruction problem. Given the cell averages of a

function uðxÞ at the cell centers xi

ui �
1

Dxi

Z xiþ1=2

xi�1=2

uðxÞdx; i ¼ 1; 2; . . . ;N (4.1)

find a polynomial piðxÞ, of degree k � 1 at most, such

that piðxÞ is the kth order accurate approximation to the

function uðxÞ inside each cell I i, e.g. a polynomial

satisfying

piðxÞ ¼ uðxÞ þ OðDxkÞ; x 2 I i; i ¼ 1; 2; . . . ;N. (4.2)

The approximations of the function uðxÞ with the

polynomial piðxÞ at the I i cell boundaries, i � 1=2 and
i þ 1=2, are also kth order accurate, e.g.

ui�1=2 ¼ piðxi�1=2Þ ¼ uðxi�1=2Þ þ OðDxkÞ,

uiþ1=2 ¼ piðxiþ1=2Þ ¼ uðxiþ1=2Þ þ OðDxkÞ

i ¼ 1; 2; . . . ;N. ð4:3Þ

The procedure to solve this problem is: Given the

location I i and the order of accuracy k, choose a stencil

SðiÞ ¼ fI i�r; . . . ; I iþsg including I i itself, r cells to the
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values.
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left of I i, and s cells to the right, with rþ sþ 1 ¼ k, (see

Fig. 44), and use the average values ui in SðiÞ to obtain

the polynomial piðxÞ that yields the kth order accurate

approximation of uðxÞ given in Eq. (4.2).

For a smooth function uðxÞ in the region covered by

the stencil SðiÞ, there is a unique polynomial of degree

k � 1 ¼ rþ s at most whose cell average in each cell of

SðiÞ agrees with the average of uðxÞ, e.g.

1

Dxi

Z xjþ1=2

xj�1=2

pðxÞdx ¼ ui; j ¼ i � r; . . . ; i þ s. (4.4)

The polynomial pðxÞ is the kth order approximation we

are looking for. Furthermore, since the mappings from

the given cell average values uj in the stencil SðiÞ to the

values ui�1=2 and uiþ1=2 at the cell boundary are linear,

there exist constants crj , which depend on the left shift r,

on the order of accuracy k and on the cell size Dxi

such that

uiþ1=2 ¼
Xk�1
j¼0

crjui�rþj ¼ uðxiþ1=2Þ þ OðDxkÞ. (4.5)

The constants crj are obtained using the primitive

function UðxÞ of uðxÞ defined as

UðxÞ �

Z x

�1

uðxÞdx. (4.6)

The primitive function can be expressed by cell average

values ui of uðxÞ using the definition of Eq. (4.1) to

obtain

Uðxiþ1=2Þ ¼
Xi

j¼�1

Z xiþ1=2

xj�1=2

uðxÞdx ¼
Xi

j¼�1

ujDxj . (4.7)

equation shows that the cell averages ui yield the exact

values of the primitive function UðxÞ at the cell

boundaries.

Considering the unique polynomial PðxÞ of degree k

which interpolates the primitive function at the k þ 1

cell boundaries xi�r�1=2; . . . ; xiþsþ1=2 and denoting its

derivative P0ðxÞ by pðxÞ it is easy to verify that pðxÞ is the

polynomial we are looking for and satisfies Eq. (4.4) as

follows:

1

Dxj

Z xjþ1=2

xj�1=2

pðxÞdx

¼
1

Dxj

Z xjþ1=2

xj�1=2

P0ðxÞdx

¼
1

Dxj

Z xjþ1=2

xj�1=2

uðxÞdx ¼ uj ; j ¼ i � r; . . . ; i þ s ð4:8Þ

in addition, have

P0ðxÞ ¼ U 0ðxÞ þ OðDxkÞ 8x 2 I i.

Since the exact value of the primitive function UðxÞ of

uðxÞ at the cell boundaries are obtained from the cell
averages (see Eq. (4.7)) one can use Lagrange interpola-

tion polynomials to obtain the constants crj in Eq. (4.5).

The interpolation polynomials and the values of the

constants crj for k ¼ 1, up to k ¼ 4 can be found in

Appendix A.

4.3. One-dimensional conservative approximation of the

derivative

For finite-difference schemes, the basic problem of

high-order accurate discretization is the conservative

approximation of the derivative of a function uðxÞ

ui � uðxiÞ; i ¼ 1; 2; . . . ;N (4.9)

from given point values at the nodes xi of the mesh.

In the ENO and WENO framework, this is accom-

plished through the use of a numerical flux functionbuiþ1=2 at the cell centers or half-nodes xiþ1=2buiþ1=2 � buðui�r; . . . ; uiþsÞ; i ¼ 0; 1 . . . ;N. (4.10)

This numerical flux depends on r point values on the left

and s point values on the right (see Fig. 45) such that the

flux difference approximates the derivative u0ðxÞ ¼

duðxÞ=dx to kth order accuracy

1

Dxi

ðbuiþ1=2 � bui�1=2Þ ¼ u0ðxiÞ þ OðDxkÞ,

i ¼ 0; 1; . . . ;N. ð4:11Þ

For a uniform grid Dxi ¼ Dx, this problem can be solved

with the same technique used to obtain kth order

accurate reconstruction, which was presented in Section

4.2. The assumption of uniform grid spacing for the

conservative evaluation of the derivative in the

finite-difference formulation is essential. However, the

reconstruction for the finite-volume formulation of

Section 4.2 is valid for non-uniform grid spacing.

Assuming that a numerical flux function hðxÞ exists,

and that this function depends on the uniform grid
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spacing Dx, such that

ui � ui ¼
1

Dx

Z xþDx=2

x�Dx=2
hðxÞdx (4.12)

then

u0ðxÞ ¼
1

Dx
h xþ

Dx

2

� �
� h x�

Dx

2

� �� �
(4.13)

therefore, the numerical flux function we are looking for

must satisfy

buiþ1=2 ¼ hðxiþ1=2Þ þ OðDxkÞ. (4.14)

It is not straightforward to find hðxÞ because

Eq. (4.12) defines the unknown function hðxÞ implicitly.

However, observing that the known function uðxÞ is the

cell average of hðxÞ, (see Eq. (4.12)), one can use the

same reconstruction procedure of Section 4.2 to

approximate hðxÞ.

Considering the primitive HðxÞ of hðxÞ, where HðxÞ

satisfies

HðxÞ ¼

Z x

�1

hðxÞdx (4.15)

then Eq. (4.12) implies

Hðxiþ1=2Þ ¼
Xi

j¼�1

Z xjþ1=2

xj�1=2

hðxÞdx ¼ Dx
Xi

j¼�1

ui. (4.16)

Summarizing: The conservative approximation of the

derivative in the finite-difference context becomes

equivalent to the reconstruction problem in the finite-

volume formulation when the given point values ui are

identified as cell averages of an unknown function hðxÞ

that satisfies Eq. (4.12). The primitive function of hðxÞ,

HðxÞ, is then exactly known at the cell interfaces (see

Eq. (4.16)), or half-points xiþ1=2 from the point values ui

at the nodes. Using the same approximation procedure

described in Section 4.2 obtain the kth order approx-

imation to hðxiþ1=2Þ, which according to Eq. (4.14) is the

numerical flux buiþ1=2 we are looking for.

For a stencil SðiÞ around the point i (see Fig. 45),

r points to the left and s points to the right,

ðxi�r; . . . ;xi; . . . ; xiþsÞ, where rþ s ¼ k þ 1 the numerical

flux is expressed as

buiþ1=2 ¼
Xk�1
j¼0

crjui�rþj , (4.17)

where the values of the constants crj are given in Table

A.1 of Appendix A.

For a globally smooth function uðxÞ, the best

approximation is obtained for even k by centered

approximation r ¼ s� 1. For example, the fourth-order

accurate centered flux approximation from Eq. (4.17)

and k ¼ 4 is obtained by

buiþ1=2 ¼
1
12
½�ui�1 þ 7ui þ 7uiþ1 � uiþ2
 þ OðDx4Þ.
For k odd, the best approximation is obtained by one

point upwind-biased stencils r ¼ s or r ¼ s� 2. For

example, third-order upwind fluxes for k ¼ 3 are

buiþ1=2 ¼
1
6
½�ui�1 þ 5ui þ 2uiþ1
 þ OðDx3Þ,

bui�1=2 ¼
1
6
½�ui�2 þ 5ui�1 þ 2ui
 þ OðDx3Þ

which yield a third order accurate conservative approx-

imation of the derivative

1

Dx
½buiþ1=2 � bui�1=2
 ¼

1

6
½ui�2 � 6ui�1 þ 3ui þ 2uiþ1


¼ u0ðxiÞ þ OðDx3Þ.

The selection of the most suitable stencils among

different possible stencils of Sections 4.2 and 4.3 for

fixed k is accomplished through the ENO or WENO

reconstruction procedures that are described next.

4.4. ENO reconstruction

Approximation of discontinuous solutions that occur

in hyperbolic conservation laws is accomplished with

piecewise smooth functions. These functions uðxÞ have

derivatives at all points except at discontinuities where

the function and its derivatives are assumed to have

finite left and right limits. For such piecewise smooth

functions, the order of accuracy is determined by the

local truncation error in smooth regions of the definition

of the function. A fixed stencil high-order approxima-

tion of a piecewise smooth function is not adequate near

discontinuities, because stencils that contain discontin-

uous cells cause oscillations (Gibbs phenomenon) in the

numerical solution.

The basic idea of the ENO approximation is to avoid

including discontinuous cells in the stencil as much as

possible. This is accomplished by the ‘‘adaptive stencil’’

where the left shift changes with the location xi. In the

ENO approximation, this is achieved by using the

Newton divided differences of the interpolation poly-

nomial as a smoothness indicator of the stencil.

The jth degree divided differences F ½xi�1=2; . . . ; xiþj�1=2


of the primitive function F ðxÞ, of f ðxÞ (see Eq. (4.15)),

that is defined at the cell faces or half-

points xi�1=2; . . . ; xiþj�1=2 are given by the recursive

formula

F ½xi�1=2
 ¼ F ðxi�1=2Þ

F ½xi�1=2; . . . ; xiþj�1=2


�
F ½xiþ1=2; . . . ; xiþj�1=2
 � F ½xi�1=2; . . . ; xiþj�3=2


xiþj�1=2 � xi�1=2
.

ð4:18Þ

A similar formula defines the divided differences of the

cell averages f i � f ½xi
 of the function f ðxÞ defined at the

cell centers xiþ1=2; . . . ; xiþ1=2þj (FV), or nodes xi; . . . ; xiþj
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(FD) approach. The divided differences for f i are

f ½xi; . . . ; xiþj 
 ¼
f ½xiþ1; . . . ;xiþj 
 � f ½xi; . . . ; xiþj�1


xiþj � xi

.

The function f ðxÞ and its primitive F ðxÞ ¼
R x

�1
f ðxÞdx

are related by

F ðxiþ1=2Þ ¼
Xi

j¼�1

Z xjþ1=2

xj�1=2

f ðxÞdx ¼
Xi

j¼�1

f jDxj (4.19)

therefore

F ½xi�1=2;xiþ1=2
 ¼
F ðxiþ1=2Þ � F ðxi�1=2Þ

xiþ1=2 � xi�1=2
¼ f i. (4.20)

As a result Eq. (4.18) can be expressed in terms of f ,

since the first degree divided differences of F ðxÞ are the

zeroth degree divided differences of f , and the computa-

tion of the primitive function F can be completely

avoided.

Using the above definitions, the kth degree interpola-

tion polynomial PðxÞ that interpolates the primitive

function F ðxÞ at k þ 1 points is expressed with divided

differences by

PðxÞ ¼
Xk

j¼0

F ½xi�r�1=2; . . . ; xi�rþj�1=2


�
Yj�1
m¼0

ðx� xi�rþm�1=2Þ ð4:21Þ

and the polynomial p ðxÞ ¼ P0ðxÞ is expressed as

pðxÞ ¼
Xk

j¼0

F ½xi�r�1=2; . . . ; xi�rþj�1=2


�
Xj�1
m¼0

Yj�1
l¼0
lam

ðx� xiþrþl�1=2Þ, ð4:22Þ

where again pðxÞ can be expressed by divided differences

of f .

The ENO selection process of the smoothest stencil of

k þ 1 consecutive points that include xi�1=2 and xiþ1=2 is

based on Eq. (4.21) and is performed with the following

steps:
(1)
 Start with the two-point stencil eS2ðiÞ ¼
fxi�1=2; xiþ1=2g (see Figs. 44 and 45) of the primitive

function U of u, which has a corresponding single-

cell stencil SðiÞ ¼ fI ig in terms of u (see Eq. (4.20)

and Figs. 4.1 and 4.2).
(2)
 Obtain the linear (first degree) interpolation poly-

nomial P1 on the stencil eS2ðiÞ using Newton forms
as

P1ðxÞ ¼ U ½xi�1=2
 þU ½xi�1=2; xiþ1=2


�ðx� xi�1=2Þ. ð4:23Þ
Obtain higher-order interpolation polynomials P2R
(3)
and P2S by expanding the stencil to the left including

xi�3=2 or to the right including xiþ3=2, respectively.

P2R ¼ P1ðxÞ þU ½xi�3=2; xi�1=2; xiþ1=2


�ðx� xi�1=2Þ ðx� xiþ1=2Þ,

P2S ¼ P1ðxÞ þU ½xi�1=2; xiþ1=2; xiþ3=2


�ðx� xi�1=2Þ ðx� xiþ1=2Þ. ð4:24Þ

The deviations from the linear approximation of P2R
and P2S depend on the divided differences

U ½xi�3=2; xi�1=2; xiþ1=2
 and U ½xi�1=2; xiþ1=2; xiþ3=2
,

respectively.

However, a divided difference is a measure of

smoothness of the function in the stencil because

for a smooth function UðxÞ have U ½xi�1=2; . . . ;
xiþj�1=2
 ¼ V ðjÞðxÞ=j for some xi�1=2oxoxiþj�1=2,

while if UðxÞ is discontinuous inside the stencil

U ½xi�1=2; . . . ; xiþj�1=2
 ¼ Oð1=DxjÞ.

Therefore, if

jU ½xi�3=2; xi�1=2; xiþ1=2
jojU ½xi�1=2;xiþ1=2; xiþ3=2
j

(4.25)

select the stencileS3ðiÞ ¼ fxi�3=2; xi�1=2; xiþ1=2g

or S2ðiÞ ¼ fI i�1; I ig ð4:26Þ

otherwise, select the stencileS3ðiÞ ¼ fxi�1=2; xiþ1=2; xiþ3=2g

or S2ðiÞ ¼ fI i; I iþ1g. ð4:27Þ
(4)
 Continue this process until the stencil eSkðiÞ with the

desired number of points is reached.
Note again that all divided differences of the primitive

are computed in terms of averages. For uniform mesh,

the divided differences are replaced by undivided

differences. The finite-volume and finite-difference

ENO algorithms based on the approximation and

reconstruction procedures of Sections 4.2–4.4 are

summarized next.

4.5. 1D finite-volume ENO scheme

From the cell average values fuig of the function uðxÞ,

(see Fig. 44) obtain a piecewise polynomial reconstruc-

tion of uðxÞ of degree k � 1 at most as follows:
(1)
 Using fuig compute the divided (or undivided

differences for uniform mesh) of the primitive

function UðxÞ for degrees 1 to k with Eqs. (4.18)

and (4.20).
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(2)
iu iu iu iu iu 
ui−2 ui+1ui−1 ui+2ui ≡ ui
Start with the two-point stencil for the primi-

tive eS2ðiÞ ¼ fxi�1=2; xiþ1=2g which is equivalent

to the one-point stencil S1ðiÞ ¼ fI ig for the cell

average.
ˆ ˆ  ui−3/2 ûi+3/2ui−1/2
ûi+1/2
(3)
Stencil S
Add one of the two neighboring points to the stencileSlðiÞ, l ¼ 2; . . . ; k following the ENO procedure of

Eqs. (4.25)–(4.27).

0
(4)
Stencil S2

Fig. 46. Candidate stencils for ð2k � 1Þth order accurate
Use the Lagrange form, Eq. (A.1) of Section 4.2, or

Newton form Eq. (4.22) to obtain the polynomial

piðxÞ of degree k � 1 the most that satisfies the

accuracy requirement.

WENO; WENO5 for k ¼ 3. The nodal values ui , i � roioi �

rþ k � 1 are identified as cell averages for the computation of

the WENO reconstruction of the numerical fluxes ui�1=2 at half-

point nodes.
In practice, however, once the stencil is known, it is

more convenient to find the approximation at the cell

boundaries using Eq. (4.5)

uiþ1=2 ¼
Xk�1
j¼0

crj ui�rþj ,

where the values of the constant crj are given by

Eqs. (A.2) and (A.3), in Section 4.2–4.4 for non-uniform

and uniform mesh, respectively.

4.6. 1D finite-difference ENO scheme

The finite-difference ENO reconstruction is valid

only for fixed mesh size and includes the following

steps:
(1)
 Compute the numerical flux buiþ1=2 using the given

point values fujg (see Fig. 45) and all k points fixed

stencils, where rþ s ¼ k � 1, by

buiþ1=2 ¼
Xk�1
j¼0

crjui�rþj .

Note that in the finite-difference ENO approxima-

tion the given point values fuig are identified as cell

averages of another function hðxÞ, which has a

primitive HðxÞ exactly known at the cell interfaces

xiþ1=2, and the kth order approximation hðxiþ1=2Þ is

the numerical flux buiþ1=2.
(2)
 Perform steps 1–4 of the finite-volume ENO

reconstruction treating fuig as cell averages to select

the smoothest stencil.
(3)
 Obtain a conservative kth order accurate approx-

imation of the derivative as
1

Dx
ðbuiþ1=2 � buiþ1=2Þ ¼ u0ðxiÞ þ OðDxkÞ.
4.7. WENO approximation

In the previous sections, it was shown that the ENO

reconstruction is uniformly high-order accurate right up

to the discontinuity, and achieves this by adaptively

choosing the smoothest stencil using the absolute values
of divided differences. However, ENO reconstruction in

practice may face the following problems:
(1)
 For finite-volume reconstructions, round-off error

perturbations may change the stencil because they

can result in sign change of divided differences even

in the smooth regions of the solution [159,160]. This

stencil-free adaption due to round-off error results

into a non-smooth numerical flux in finite-difference

ENO.
(2)
 The reconstruction in FV or the numerical flux

evaluation in FD ENO of kth order accuracy uses

only one of the k candidate stencils that cover 2k � 1

cells. However, if all candidate stencils were used,

then ð2k � 1Þth order accuracy could be achieved.
It was proposed in [160,161] to remedy the free

adaption problem using a biasing strategy for the stencil

selection process. However, the most recent improve-

ment of ENO is the WENO (weighted ENO) approx-

imation [33,162]. The basic idea of WENO is to use a

convex combination of all candidate stencils to form the

reconstruction. The WENO approximation is explained

more precisely in this section.

Suppose that the k candidate stencils SrðiÞ ¼

fxi�r; . . . ; xi�rþk�1g (see Fig. 46 for k ¼ 3) that produce

k different reconstructions for the value uiþ1=2 at the cell

interface or the numerical flux buiþ1=2 are available. In

both cases the reconstruction is obtained by

u
ðrÞ
iþ1=2 ¼

Xk�1
j¼0

crjui�rþj ; r ¼ 0; . . . ; k � 1, (4.28)

where the superscript r denotes the shift to the left.

Reconstruction with WENO considers a convex

combination of all u
ðrÞ
iþ1=2 as a new approximation at
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the cell boundary as follows:

uiþ1=2 ¼
Xk�1
r¼0

or u
ðrÞ
iþ1=2, (4.29)

Xk�1
r¼0

or ¼ 1; orX0 (4.30)

when the function uðxÞ includes a discontinuity in one or

more of the stencils SrðiÞ then the corresponding weight

or must be essentially zero in order to follow as closely

as possible the successful ENO idea. Furthermore, the

weights should be smooth functions of the cell averages

(FV) or the point values (FD) approximation. All these

considerations [33] lead to the following forms of

the weights:

or ¼
arPk�1

S¼0 aS

; r ¼ 0; . . . ; k � 1, (4.31)

ar ¼
dr

ðeþ brÞ
2

(4.32)

where e40 taken as e ¼ 10�6 in [33] to avoid division by
zero and br are the smoothness indicators of the stencil

SrðiÞ. The smoothness indicators in [33] are obtained by

minimizing the total variation of the ðk � 1Þth degree

reconstruction polynomial pðxÞ constructed on each

SrðiÞ, which if evaluated at xiþ1=2 yields the kth order

approximation of uðxiþ1=2Þ.

Then the smoothness indicators br are defined by

br ¼
Xk�1
m¼1

Z xiþ1=2

xi�1=2

Dx2m�1 qmprðxÞ

qmx

� �2
dx. (4.33)

The smoothness indicators for k ¼ 2 and 3 obtained

from Eq. (4.33) are

Smoothness indicators for k ¼ 2, third-order WENO

reconstruction

b0 ¼ ðuiþ1 � uiÞ
2,

b1 ¼ ðui � ui�1Þ
2. ð4:34Þ

Smoothness indicators for k ¼ 3, fifth order WENO

reconstruction

b0 ¼
13
12
ðui � 2uiþ1 þ uiþ2Þ

2
þ 1
4
ð3ui � 4uiþ1 þ uiþ2Þ

2,

b1 ¼
13
12
ðui�1 � 2ui þ uiþ1Þ

2
þ 1
4
ðui�1 � 4uiþ1Þ

2,

b3 ¼
13
12
ðui�2 � 2ui þ uiÞ

2
þ 1

4
ðui�2 � 4ui�1 þ 3uiÞ

2,

(4.35)

where for k ¼ 2 obtain ð2k � 1Þ ¼ third-order accuracy

and for k ¼ 3 obtain ð2k � 1Þ ¼ fifth-order accuracy.

The WENO idea presented for FV reconstruction carries

over to the finite-difference context once the cell

averages ui are replaced by nodal values ui and the

approximation at the cell boundaries of Eq. (4.29) are
replaced by the numerical flux function buiþ1=2 at half-

point nodes.

Implementation of WENO schemes is more conve-

nient in practice with the formulation of Jiang and Wu

[163]. For example, for k ¼ 3, fifth-order scheme, the

numerical flux buiþ1=2 is taken as the weighted average of

the numerical fluxes in the three substencils S0, S1, and

S2 of Fig. 46. The third-order accurate approximationsbus
iþ1=2, s ¼ 0; 1; 2 are

bu0iþ1=2 ¼ 1
3

ui�2 �
7
6

ui�1 þ
11
6

ui,bu1iþ1=2 ¼ �16 ui�1 þ
5
6

ui þ
1
3

uiþ1,bu2iþ1=2 ¼ 1
3

ui þ
5
6

uiþ1 �
1
6

uiþ2, ð4:36Þ

where ui � ui denotes the point value at the nodes i for

the FD WENO formulation.

The fifth-order accurate WENO approximation of the

numerical flux is

buiþ1=2 ¼ o0bu0iþ1=2 þ o1bu1iþ1=2 þ o2bu2iþ1=2, (4.37)

where the ð2k � 1Þ ¼ fifth-order approximation to buiþ1=2

is based on the five-point stencil i � 2pkpi þ 2.

For o0 ¼ 1
10
, o1 ¼ 6

10
, o2 ¼ 3

10
, which are referred to as

optimal weights in Balsara and Shu [34], the approxima-

tion of Eq. (4.37) becomes

buiþ1=2 ¼
1
30

ui�2 �
13
60

ui�1 þ
47
60

ui þ
9
20

uiþ1 �
1
20

uiþ2 (4.38)

or

buiþ1=2 ¼ � 1
12

ui�1 þ
7
12

ui þ
7
12

uiþ1 �
1
12

uiþ1

� 1
30
ð�ui�2 þ 4ui�1 � 6ui þ 4uiþ1 � uiþ2Þ.

ð4:39Þ

The last form of Eq. (4.39) shows that the WENO

approximation of the numerical flux buiþ1=2 is a sum of a

centered flux

buciþ1=2 ¼ 1
12
ð�ui�1 þ 7ui þ 7uiþ1 � uiþ2Þ

plus a dissipative portion of the WENO scheme.

Replacing o1 by o1 ¼ 1� o0 � o2 and using

Eqs. (4.36) in Eq. (4.37) obtain

buiþ1=2 ¼
1
12
ð�ui�1 þ 7ui þ 7uiþ1 � uiþ2Þ

þ 1
3
ðui�2 � 3ui�1 þ 3ui � uiþ1Þo0

þ 1
6
ðui�1 � 3ui þ 3uiþ1 � uiþ2Þðo2 � 1

2
Þ

¼ 1
12
ð�ui�1 þ 7ui þ 7uiþ1 � uiþ2Þ

� fw ðDui�3=2; Dui�1=2;Duiþ1=2;Duiþ3=2Þ

¼ 1
12
ð�ui�1 þ 7ui þ 7uiþ1 � uiþ2Þ

� 1
3
o0ðD0 � 2D1 þD2Þ

þ 1
6
ðo2 � 1

2
Þ ðD1 � 2D2 þD3Þ, ð4:40Þ

where Dui�3=2 ¼ D0 ¼ ui�2 � ui�1; D1 ¼ ui�1 � ui;
D2 ¼ ui � uiþ1; D3 ¼ uiþ1 � uiþ2.
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The weights are defined as

o0 ¼
a0

a0 þ a1 þ a2
; o2 ¼

a2
a0 þ a1 þ a2

(4.41)

ar ¼ dr=ðSIk
r þ eÞ; r ¼ 0; 1; 2.

Summarizing:

For k ¼ 3 the centered stencil of the ð2k � 1Þ, fifth-

order scheme is

buciþ1=2 ¼ 1
12
ð�ui�1 þ 7ui þ 7uiþ1 � uiþ2Þ þ OðDx4Þ (4.42)

the optimal weights are d0 ¼
1
10
; d1 ¼

6
10
; d2 ¼

3
10
.

For the smooth regions the numerical flux is evaluated

using optimal weights by

buiþ1=2 ¼
1
30

ui�2 �
13
60

ui�1 þ
47
60

ui

þ 9
20

uiþ1 �
1
20

uiþ2 þ OðDx5Þ. ð4:43Þ

The dissipative WENO part is

f3o ¼
1
3
o0 ðD0 � 2D1 þD2Þ

þ 1
6
ðo2 � 1

2
Þ ðD1 � 2D2 þD3Þ. ð4:44Þ

The smoothness indicators b3r ¼ SI3r , r ¼ 0; 1; 2 are
given by

SI30 ¼ D0ð4D0 � 11D1Þ þ 10D2
1,

SI31 ¼ D1ð4D1 � 5D2Þ þ 4D2
2,

SI32 ¼ D2ð10D2 � 11D3Þ þ 4D2
3. ð4:45Þ

Using this notation the high-order WENO recon-

structions buiþ1=2 ¼
Piþk�1

r¼i�kþ2 ck
r ur of Balsara and Shu [34]

for k ¼ 4 and 5, which yield the seventh- and ninth-

order accurate WENO schemes can be obtained.

The component-wise application of the finite-volume

ENO and WENO schemes is straightforward. Further-

more, the characteristic variables wi ¼ R�1ui for the

divided differences (or undivided differences for equal

grid spacing) for all cell averages can be used for ENO

and WENO approximation. The local characteristic

field is then used to perform scalar ENO or WENO

reconstruction for each component of the characteristic

variables w to obtain the reconstruction wiþ1=2. Trans-

forming back into physical space uiþ1=2 ¼ Rwiþ1=2 apply

on exact or approximate Riemann solver to compute the

flux bf iþ1=2. The finite-difference ENO or WENO for

uniform meshes follows the same steps considering the

point values ui as cell averages. Using then ui compute

the undivided differences for the fluxes f ðuiÞ.

4.8. Multidimensional ENO and WENO reconstruction

The multidimensional ENO and WENO schemes are

based on the preliminaries of the previous sections. For

fully unstructured meshes, however, the identification of

suitable stencils is not straightforward. Presentation of

multidimensional algorithms starts from the ENO in

Cartesian meshes.
4.8.1. Finite-volume reconstruction for Cartesian mesh

Multidimensional reconstruction and approximation

without loss of generality is considered in two dimen-

sions. The ideas described carry over to three dimension

as well. The two-dimensional ENO reconstruction

problem is as follows. Given the cell I ij and the order

of accuracy k, choose a stencil Sði; jÞ based on kðk þ

1Þ=2 neighboring cells, and find a polynomial pðx; yÞ of
degree k � 1 at most whose cell average in each of the

cells in the stencil Sði; jÞ agrees with uðx; yÞ

uij ¼
1

DxiDyj

Z yjþ1=2

yj�1=2

Z xiþ1=2

xi�1=2

pðx; ZÞdxdZ,

I ij 2 Sði; jÞ. ð4:46Þ

The multidimensional ENO reconstruction is more

complex than the one-dimensional case because there

are many more candidate stencils Sði; jÞ and has

the following difficulties: Some candidate stencils

cannot be used to obtain the polynomial pðx; yÞ that
satisfies Eq. (4.46). Some of the polynomials do not

satisfy the accuracy condition pijðx; yÞ ¼ uðx; yÞþ
O ðDk

Þ; ðx; yÞ 2 I ij ; i ¼ 1; . . . ;Nx; j ¼ 1; . . . ;Ny.

These difficulties are more profound for unstructured

meshes [164]. For rectangular meshes [165] the tensor

products of one-dimensional polynomials are used and

pðx; yÞ is written as

pðx; yÞ ¼
Xk�1
m¼0

Xk�1
n¼0

amnxnym. (4.47)

Furthermore, by restricting the search in the following

tensor product stencils (see Fig. 47)

Srsði; jÞ ¼ fImn : i � rpmpi þ k � 1� r,

j � spnpj þ k � 1� sg
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Fig. 48. Stencil definition for reconstruction in a triangular

mesh.
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the reconstruction proceeds as in one dimension. The

computing cost for two-dimensional reconstruction is

high because for each point the reconstruction cost is

double. Casper and Atkins [165] give details about

possible reconstruction stencils (see Fig. 47).

4.8.2. Two-dimensional reconstruction for triangles

The reconstruction problem for triangular meshes is:

Given the cell averages ui of uðx; yÞ on a triangulation
Ti

ui ¼
1

jTij

Z
Ti

uðx; ZÞdxdZ, (4.48)

where jTij is the area of the triangle Ti find a polynomial

piðx; yÞ of degree k � 1 at most for each triangle Ti such

that the kth order accurate approximation of uðx; yÞ
inside the triangles Ti is

piðx; yÞ ¼ uðx; yÞ þ OðDk
Þ; ðx; yÞ 2 Ti i ¼ 1; . . . ;N,

(4.49)

where D denotes a typical length of the triangle for

example the longest edge. For finite-volume schemes, the

approximation of uðx; yÞ at the triangle boundaries (see
points P1, P2 in Fig. 48) is needed to apply quadratures

as in Eq. (4.49) yields the approximation of uðx; yÞ at
these points.

Similar to the finite volume for Cartesian mesh, given

the triangle Ti and the order of accuracy k, again choose

a stencil based on m ¼ kðk þ 1Þ=2 neighboring triangles,
which form the stencil SðiÞ. For SðiÞ, find a polynomial

pðx; yÞ of degree k � 1 the most whose cell average in

each of the triangles in the stencil SðiÞ agrees with the

average of uðx; yÞ given by Eq. (4.48). This condition
yields on m�m linear system, and if this system has a

unique solution then the stencil SðiÞ is admissible. For
second-order linear reconstruction, k ¼ 1 the stencil

formed by Ti plus two immediate neighbors is admis-

sible for most triangulations. For third-order recon-

struction k ¼ 3, (quadratic polynomial k � 1 ¼ 2 is

needed), m ¼ 6, some of the stencils consisting of Ti

and five of its neighbors may not be admissible. For

fourth-order reconstruction k ¼ 4, (cubic polynomial),

m ¼ 10, the stencil consists of Ti plus nine of the

immediate neighbors shown in Fig. 48. The most robust

way for third- and fourth-order reconstruction is the

least-squares reconstruction procedure suggested by

Barth and Frederickson [131] where the polynomial p

is determined by requiring that p has the same cell

average as u on T0 and also has the same cell average as

u on the collection of the neighboring triangles but only

in a least-squares sense. The reconstruction problem

becomes extremely time consuming for high-order

reconstructions in three dimensions.

For completeness, the k-exact reconstruction of Barth

and Frederickson [131] that is used in ENO and WENO

finite-volume sachems is briefly summarized. The basic

idea for arbitrary order (k-exact) reconstruction in two

dimensions is to determine the following reconstruction

polynomials for each subdomain Oi:

ukðx; yÞi ¼
X

mþnpk

aðm;nÞPðm;nÞðx� xc; y� ycÞ, (4.50)

where Pðm;nÞðx� xc; y� ycÞ ¼ ðx� xcÞ
m
ðy� ycÞ

n and

ðxc; ycÞ is the centroid of the volume. The k-exact

reconstruction strategy optimizes efficiency by precom-

puting the weights W i in each cell Oi using a neighbor

set Ni as follows

aðm;nÞ ¼
X
i2Ni

W ðm;nÞui, (4.51)

where aðm;nÞ are the polynomial coefficients in Eq. (4.50).

For k-exact reconstruction in two dimensions, the set Ni

of the control volume neighbors must contain at least

ðk þ 1Þðk þ 2Þ=2 members. The reconstruction is com-
plemented by a monotonicity enforcing procedure as

described in [130].

Friedrich [166] proposed to use a weighted sum of all

reconstruction polynomials p1; . . . ; pm as follows:

p ¼
Xm

i¼1

oipi, (4.52)

where the weights of pi are chosen such that oi is low if

the oscillation of pi is high. As computational cells in

Friedrich formulation [166] were considered the dual

cells resulting from the lines joining the barycenters

with the midpoints of the edges. The cell averages are

defined as

uk ¼
1

jOkj

Z
Ok

uðxÞdx, (4.53)
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where Ok are polygonally bounded by a finite number of

line segments. Further details on the full reconstruction

algorithm the selection of admissible stencils and the

choice of smoothness indicators and the WENO recon-

struction weights oi in Eq. (4.49) can be found in [166].

4.8.3. Multidimensional finite-difference ENO

For finite-difference methods for hyperbolic conserva-

tion laws, the problem is to obtain high order,

conservative approximation of the derivative from point

values [32,167]. Similar to the one-dimensional case, in

multidimensions the uniform mesh assumption is

essential. For finite-difference methods in two dimen-

sions the statement of the problem is:

Given the point uij values of uðx; yÞ on a uniform mesh

uij � uðxi; yjÞ
i ¼ 1; 2; . . . ;Nx;

j ¼ 1; 2; . . . ;Ny;
(4.54)

find the numerical flux functions

buiþ1=2; j ¼ buðui�r;j;...; uiþk�1�r;jÞ i ¼ 0; 1; . . . ;Nx,

ui; jþ1=2 ¼ buðui; j�s;...; ui; jþk�1�sÞ j ¼ 0; 1; . . . ;Ny ð4:55Þ

that obtain a kth order conservative approximation of

the derivative by Eq. (4.14). Therefore, the conservative

approximation of the derivative from point values is

accomplished in multidimensions as in the one-

dimensional case, e.g. considering wðxÞ ¼ uðx; yjÞ

obtain uxðxi; yjÞ ¼ w0ðxiÞ and vðyÞ ¼ uðxi; yÞ obtain

vyðxi; yjÞ ¼ v0ðyjÞ.

An example of multidimensional ENO or WENO

scheme is the characteristic-wise ENO or WENO

implementation for the Euler equations in the finite-

difference context on uniform meshes. The Lax–

Friedrich’s or Roe’s approximate Riemann solver can

be used to split the fluxes. For example, using the

Lax–Friedrich’s flux as building block obtain

f LFðx; yÞ ¼
1
2
½f ðxÞ þ f ðyÞ � lðy� xÞ
,

l ¼ max jf 0ðuÞj.

Perform the following steps in each of the ði; j; kÞ or
ðx; y; zÞ directions
(1)
 Project the positive and negative part of the flux in

the i direction, to the characteristic field in the i

direction by multiplying with the left eigenvectors

lm
i ðm ¼ 1� 4 for 2D or m ¼ 1� 5 for 3DÞ to ob-

tain f W
LF as follows:

ðf W
LFÞ

m
iþ1=2 ¼

Xm

n¼1

ðf LFÞ
n
iþ1=2l

n
iþ1=2.
(2)
 Perform kth order ENO or WENO reconstruction to

obtain the numerical fluxes bf W

LF in the characteristic

field.
(3)
 Project the numerical ðbf W

LFÞ fluxes to the physical

space by multiplying with the right eigenvectors rm
i

to obtain the numerical fluxes bf in the conservative
variable space

ðbf Þmiþ1=2 ¼Xm

n¼1

rn
iþ1=2ð

bf W

LFÞ
n
iþ1=2.
(4)
 Compute the kth order accurate conservative

approximation of the derivative f x as

f x ¼

bf iþ1=2 �
bf i�1=2

Dx
þ OðDxkÞ.
Repeat steps 1–4 for the other directions to obtain the

flux derivatives gy and hz.

4.9. Optimization of WENO schemes

WENO schemes have been successfully applied to

problems with shocks and complex smooth flow features

[168]. Direct application of WENO schemes to wave

propagation problems, such as computational aeroa-

coustics (CAA) and computational electromagnetics

(CEM), where resolution of short waves is important

is not optimal because WENO schemes are designed for

high resolution of discontinuities and to achieve the

formal order of accuracy of the reconstruction. Efficient

and accurate resolution of short waves is achieved in

CAA with the optimized schemes where the coefficients

of the scheme are altered to minimize a particular type

of error instead of the truncation error. These optimized

schemes [100,111,112,132,169,170] have been used very

successfully for better resolution of short waves in

broadband acoustic wave propagation.

Recently, Wang and Chen [171] using ideas of CAA-

optimized schemes proposed modification of the WENO

smoothness measures and developed an optimized

WENO (OWENO) scheme. Following the practice of

the dispersion relation Preserving (DRP) scheme [86]

presented in Section 3.4.2, Wang and Chen [171]

achieved high resolution for short waves with OWENO.

The OWENO schemes of Wang and Chen [171]

optimizes all candidate stencils and finds the best

weights to combine them. The approach of Wang and

Chen [171] was a significant improvement over previous

attempts to optimize WENO schemes [172], where only

the weights of the WENO schemes were optimized.

The development of the OWENO scheme is based on

the DRP idea [86]. The OWENO scheme instead of

achieving the maximum order of accuracy k, compro-

mises the accuracy requirement by setting p1ok in the

conservative approximation of the derivative

qui

qx
¼
ðbur

iþ1=2 � bur
i�1=2Þ

Dx
þ OðDxp1 Þ; rþ sþ 1 ¼ k

(4.56)
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and minimizes the difference between the numerical

wavenumber and the actual wave number. The numer-

ical wavenumber for the scalar wave equation uþ aux

¼ 0 where the spatial derivative is evaluated as in Eq.

(4.56) becomes

ar ¼
�i

Dx

Xs

m¼�r

cr;jþr expðimaDxÞ½1� expð�iaDxÞ


¼ aþ O ðaDxÞp1 . ð4:57Þ

Optimized coefficient crj in the approximation of the

numerical flux buiþ1=2 ¼
Pk�1

j¼0 crjui�rþj are obtained by

minimizing the L2 norm of the difference between the

numerical wavenumber of Eq. (4.57) and the actual

wavenumber for a particular range ½�aDx; a0Dx
.

These coefficients crj are obtained by minimizing the

integral

Er ¼

Z a0Dx

�a0Dx

l½ReðarDxÞ � aDx
2

þ ð1� lÞ½InðarDxÞ
2dðaDxÞ. ð4:58Þ

The OWENO scheme is then obtained in two steps:
(1)
 For p1th order of accuracy with Eq. (4.56) the

following p1 linear equations must be satisfiedXk�1
j¼0

bmjcrj ¼ zm; m ¼ 1; . . . ; p1, (4.59)

where bmj and zm are constants the rest k � p1 are

obtained from the minimization of Er in Eq. (4.58)

qEr

qcrj

¼ 0; j ¼ p1; . . . ; k � 1. (4.60)
(2)
 Perform a convex combination of the k candidate

p1th order accurate stencils to obtain OWENO as

buOWENOiþ1=2 ¼
Xk�1
r¼o

hrbur
iþ1=2

so that
Pk�1

r¼0 hr ¼ 1, hrX0, p2pk þ 1

1

Dx
ðbuOWENOiþ1=2 � buOWENOiþ1=2 Þ ¼

qu

qx

� �
i

þ OðDxp1þp2 Þ.

(4.61)
The k � 1� p2 free weight parameters of Eq. (4.61) are

p2pk � 1 then determined by minimizing again the

integral of Eq. (4.58) but with ar replaced by

a ¼
Pk�1

r¼0 hrar.

The coefficients of several high-order accurate

OWENO schemes can be found in [171].
The new smoothness indicators of the k ¼ 4,

OWENO scheme that satisfy

br ¼
Xk�1

m¼2 k42

Z xiþ1=2

xi�1=2

Dxm�1 q
mprðxÞ

qmxdx

" #2
,

r ¼ 0; . . . ; k � 1 ð4:62Þ

instead of Eq. (4.33) are given by

b0 ¼ ð2ui þ 5uiþ1 þ 4uiþ2 � uiþ3Þ
2

� ðui þ 3uiþ1 � 3uiþ2 þ uiþ3Þ
2,

b1 ¼ ðui�1 � 2ui þ uiþ1Þ
2

þ ð�ui�1 þ 3ui � 3uiþ1 þ uiþ2Þ
2,

b2 ¼ ðui�1 � 2ui þ uiþ1Þ
2

þ ð�ui�2 þ 3ui�1 � 3ui þ uiþ1Þ
2,

b3 ¼ ð�ui�3 þ 4ui�2 � 5ui�1 þ 2uiÞ
2

þ ð�ui�3 þ 3ui�2 � 3ui�1 þ uiÞ
2. ð4:63Þ

Taylor expansion of b0; b1; b2;b3 yields

br ¼ ðu
00
i Dx2Þ þ ðu000i Dx3Þ2 þ qðDx6Þ,

r ¼ 0; . . . ; 3 ð4:64Þ

therefore in the case u00i ¼ u000i ¼ 0 the OWENO scheme

for k ¼ 4 does not have the formal accuracy of standard

WENO scheme ð2k � 1Þ ¼ 7 but achieves better resolu-

tion of high wavenumbers.

4.10. Compact WENO approximation

It was pointed out in Section 3 that two advantages of

compact schemes compared to non-compact (explicit)

counterparts are: (i) they yield better accuracy and wave-

space resolution for the same number of points in the

stencil, and (ii) they offer an advantage in the implemen-

tation of boundary conditions because fewer boundary

points must be handled. These advantages are achieved at

a moderate increase in computing cost resulting from the

matrix inversion. Recently, Pirozzoli [173], exploiting the

advantages of compact schemes and developed a narrow-

stencil, fifth-order accurate WENO compact scheme

referred to from now on as CWENO5 scheme.

Starting with the same formulation as in Section 4.3 (see

Eq. (4.9)–(4.14)) considered the following compact repre-

sentation for the reconstruction of the numerical flux buiþ1=2XL2
l¼�L1

Albuiþ1=2þl ¼
XM2

m¼M1

amuiþm. (4.65)

The Taylor series expansion of u up to order K around

xiþ1=2 is

uðxÞ ¼
XK�1
n¼0

qnu

qxn

����
iþ1=2

ðx� xiþ1=2Þ
n

n!
þ OðhK

Þ (4.66)
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Fig. 49. Dispersion of compact WENO schemes; seventh-order

WENO —, fifth-order compact WENO –�–�–�, fifth-order

WENO 2222 sixth-order centered —�—� � �, fourth-order

centered – – –, exact � � � � � �.
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Fig. 50. Dissipation of compact WENO schemes: fifth-order

compact WENO ____, sixth-order centered 2222, fourth-

order centered � � � � � �.
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and recalling that the points values at the nodes, ui,

which are considered as cell averages for the finite-

difference ENO reconstruction, e.g. ui � ui, satisfy

uiþm ¼
Uiþmþ1=2 �Uiþm�1=2

Dx
, (4.67)

where UðxÞ is the primitive function of uðxÞ satisfying

UðxÞ ¼
XK�1
n¼0

qnu

qxn

����
iþ1=2

ðx� xiþ1=2Þ
nþ1

ðnþ 1Þ!
þ OðDxKþ1Þ (4.68)

therefore

uiþm ¼
XK�1
n¼0

qnu

qxn

����
iþ1=2

1

ðnþ 1Þ!
½mnþ1 � ðm� 1Þnþ1
Dxn

þ OðDxKþ1Þ. ð4:69Þ

Inserting the Taylor series expansions for buiþ1=2 and uiþm

from Eqs. (4.66) and (4.69), respectively, in Eq. (4.65) and

matching the coefficients of like powers of h requiring kth

order accurate approximation (with kpK) obtain

ðnþ 1Þ
XL2

l¼�L1

All
n
�

XM2

m¼�M1

am½m
nþ1 � ðm� 1Þnþ1
 ¼ 0

n ¼ 0; . . . ; k � 1. ð4:70Þ

Solving the system of Eq. (4.70) for L1 þ L2 þ 1, Al

unknowns and M1 þM2 þ 1, am unknowns obtain the

coefficients of the compact upwind scheme. The only

fifth-order accurate compact scheme ðk ¼ 5Þ for

L1 ¼ L2 ¼ M1 ¼ M2 ¼ 1, which involves tridiagonal

matrix inversion is

3bui�1=2 þ 6buiþ1=2 þ buiþ3=2 ¼
1
3

ui�1 þ
19
3

ui þ
10
3

uiþ1.

(4.71)

The numerical fluxes uiþ1=2 obtained from the point

values ui � ui through the solution of the system of

Eq. (4.71) yield a fifth-order accurate, conservative

evaluation of the derivative as

1

Dx
ðbuiþ1=2 � bui�1=2Þ ¼ u0ðxiÞ þ OðDxkÞ. (4.72)

Furthermore, the following explicit WENO approxi-

mations were obtained fifth-order upwind-biased

approximation:buiþ1=2 ¼
1
60
ð2ui�2 � 13ui�1 þ 47ui þ 27uiþ1 � 3ui�2Þ.

(4.73)

Seventh-order upwind-biased approximation:buiþ1=2 ¼
1
420
ð�3ui�3 þ 25ui�2 � 101ui�1

þ 319ui þ 214uiþ1 � 38uiþ2 þ 4uiþ3Þ. ð4:74Þ

The approximations of Eqs. (4.73) and (4.74) can be

used as fifth- or seventh-order WENO schemes inn

smooth flow regions.

The resolution properties of the WENO approxima-

tions of Eqs. (4.71), (4.73), and (4.74) were demonstrated

in [173]. The linear advection equation ux þ aux ¼ 0,
a40 was considered for the evaluation of the resolving
ability. The dispersion properties of the new schemes are

compared with the classical, symmetric compact

schemes in Fig. 49. The upwind-biased approximations

of Eqs. (4.68), (4.73), and (4.74) introduce in addition

dissipation errors. The dissipation error is shown in

Fig. 50. It can be seen that the compact WENO scheme

of Eq. (4.71) has very small dissipation error, smaller

than the fifth- and seventh-order explicit schemes of

Eqs. (4.73) and (4.74), for the range 0obkop=2.
For non-periodic domains, the following fourth-order

accurate boundary closures were proposed for the

implementation of Eq. (4.71).

bu1=2 ¼ 1
12
ð3u0 þ 13u1 � 5u2 þ u3Þ,

buNþ1=2 ¼
1
12
ð25uN � 23uN�1 þ 13uN�2 � 3uN�3Þ. (4.75)
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A Roe-type, characteristic-wise, finite-difference, imple-

mentation of the compact CWENO5 scheme developed

by Pirozzoli [173] was recently presented by Ren et al.

[174]. The formulation of Ren et al. [174] closely follow

the hybrid compact-ENO ideas introduced by Adams

and Shariff [175]. The implementation proposed in [174]

for the scalar hyperbolic conservation law ut þ f xðuÞ ¼ 0

is as follows.

The numerical flux function bf iþ1=2 for the evaluation

of the conservative approximation of the derivative f x is

obtained by

3bf i�1=2 þ 6
bf iþ1=2 þ

bf iþ3=2

¼ 1
3
ðf i�1 þ 19f i þ 10f iþ1Þ if eaiþ1=2X0, ð4:76Þ

bf i�1=2 þ 6
bf iþ1=2 þ 3

bf iþ3=2

¼ 1
3
ð10f i þ 19f iþ1 þ f iþ2Þ if eaiþ1=2o0, ð4:77Þ

where eaiþ1=2 is the numerical wave speed defined by

eaiþ1=2 ¼

bf iþ1 �
bf i

uiþ1 � ui

if uiþ1 � uia0;

qf

qu

� �
i

otherwise:

8>>><>>>: (4.78)

Denoting Siþ1=2 ¼ signðeaiþ1=2Þ Eqs. (4.76) and (92) can

be combined to

Aiþ1=2
bf i�1=2 þ

bf iþ1=2 þ Biþ1=2
bf iþ3=2 ¼ biþ1=2, (4.79)

where

Aiþ1=2 ¼
1

3
þ

Siþ1=2

6
; Biþ1=2 ¼

1

3
þ

Siþ1=2

6
,

biþ1=2 ¼
1þ Siþ1=2

2

1

18
f i�1 þ

19

18
f i þ

5

9
f iþ1

� �
þ
1� Siþ1=2

2

5

9
f i þ

19

18
f iþ1 þ

1

18
f iþ2

� �
.

The compact WENO scheme of Eq. (4.79) gives very

satisfactory results for smooth flow regions. However, at

the discontinuities of the solution the Gibbs phenomen-

on will occur that contaminates the solution and

eventually leads to nonlinear instability.

For these regions, a hybrid method is proposed in

[174] where the compact scheme of Eq. (4.79) is coupled

with the WENO procedure. The hybrid scheme is the

weighted average of the compact scheme in Eq. (4.79)

and WENO of Section 4.7.

This hybrid scheme [174] has the following form:

siþ1=2Aiþ1=2
bf i�1=2 þ

bf iþ1=2

þ si�1=2Biþ1=2
bf iþ3=2 ¼ bciþ1=2, ð4:80Þ

where s is the weight and

ciþ1=2 ¼ siþ1=2biþ1=2 þ ð1� siþ1=2Þf
WENO
iþ1=2 .
For siþ1=2 ¼ 1, Eq. (4.80) reduces to the compact

scheme of Eq. (4.79) and for siþ1=2 ¼ 0 becomes a

WENO scheme. It is necessary, therefore, that the

weight be directly related to the smoothness of

the numerical solution. This is achieved through the

definition of a smoothness indicator riþ1=2 defined by

Ren et al. [174] by

riþ1=2 ¼ minðrj ; rjþ1Þ,

rj ¼
2jDf iþ1=2Df i�1=2j þ e

ðDf iþ1=2Þ
2
þ ðDf i�1=2Þ

2
þ e

,

Df iþ1=2 ¼ f iþ1 � f i,

e ¼
0:9rc

1� 0:9rc

x2; x40; rc ’ 1. ð4:81Þ

Note that Pirozzoli simply defined the smoothness

indicator as riþ1=2 ¼ jf jþ1 � f j j and determined siþ1=2 by

sjþ1=2 ¼

1 if rj�1=2perc and rjþ1=2perc

and rjþ3=2perc;

0 otherwise;

8><>: (4.82)

where rc is a problem-dependent threshold. Using the

definition of Ren et al. [174] for riþ1=2 the weight siþ1=2 is

computed by

siþ1=2 ¼ min 1;
riþ1=2

rc

� �
. (4.83)

4.11. Hybrid compact-WENO scheme for the Euler

equations

A characteristic-wise approach is used in [174] with

the hybrid, compact WENO scheme for the numerical

solution of the Euler equations. The numerical flux

evaluation is performed in the following steps:
(1)
 Compute an average state Uiþ1=2 by the simple

mean Uiþ1=2 ¼ ðUi þUiþ1Þ=2 or the Roe average.

(2)
 Compute the eigenvalues liþ1=2i þ 1=2 ¼ 1; 2; 3; 4

and the left eigenvectors l
ðmÞ

jþ1=2 at the average state.
(3)
 Perform local characteristic decomposition

wðmÞn ¼ liþ1=2 Fn

m ¼ 1; 2; 3; 4;

n ¼ i � 1; . . . ; i þ 2:
(4)
 Define

s
ðmÞ
iþ1=2 ¼ signðl

ðmÞ
iþ1=2Þ,

r
ðmÞ
iþ1=2 ¼ minðr

ðiÞ
j ; r

ðiÞ
iþ1Þ,

r
ðmÞ
i ¼

j2Dw
ðmÞ

iþ1=2Dw
ðmÞ

i�1=2j þ e

ðDw
ðmÞ
iþ1=2Þ

2
þ ðDw

ðmÞ
i�1=2Þ

2
þ e

,

sðmÞ
iþ1=2 ¼ min 1;

r
ðmÞ

iþ1=2

rc

 !
.
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Apply the hybrid, compact-WENO scheme for the
(5)
local characteristic variables as

sðmÞ
iþ1=2A

ðmÞ
iþ1=2w

ðmÞ
i�1=2 þ w

ðmÞ
iþ1=2

þ sðmÞ
iþ1=2B

ðmÞ
iþ1=2w

ðmÞ
iþ3=2 ¼ c

ðmÞ
iþ1=2,

A
ðmÞ
iþ1=2 ¼

2þ s
ðmÞ
iþ1=2

6
; B

ðmÞ
iþ1=2 ¼

2� s
ðmÞ
iþ1=2

6
,

c
ðmÞ
iþ1=2 ¼ sðmÞ

iþ1=2biþ1=2 þ ð1� sðmÞ
iþ1=2Þw

ðmÞWENO
iþ1=2 ,

b
ðmÞ

iþ1=2 ¼
1

18

1þ s
ðmÞ

iþ1=2

2

 !
ðw
ðmÞ
i�1 þ 19w

ðmÞ
i þ 10w

ðmÞ
iþ1Þ

¼ þ
1

18

1� s
ðmÞ
iþ1=2

2

 !
�ð10w

ðmÞ
i þ 19w

ðmÞ
i þ w

ðmÞ
iþ2Þ, ð4:84Þ

where wðmÞWENO is computed with the WENO

scheme of Section 4.5.
(6)
Fig. 51. Comparison of the required CPU time for FV and FD

ENO in two dimensions.
Project Eq. (4.84) back to conservative variables and

solve the following block-tridiagonal system of

equations too obtain the numerical flux in the

conservative variable space

½A
i1=2Fi�1=2 þ Liþ1=2Fiþ1=2

þ ½B
iþ1=2Fiþ3=2 ¼ ciþ1=2,

½A
iþ1=2 ¼

sð1Þ
iþ1=2 A

ð1Þ
iþ1=2 l

ð1Þ
iþ1=2

sð4Þ
iþ1=2 A

ð4Þ
iþ1=2 l

ð4Þ
iþ1=2

264
375,

½B
iþ1=2 ¼

sð1Þ
iþ1=2 B

ð1Þ
iþ1=2 l

ð1Þ

iþ1=2

sð4Þ
iþ1=2 B

ð4Þ
iþ1=2 l

ð4Þ

iþ1=2

264
375,

Liþ1=2 ¼

l
ð1Þ
iþ1=2

l
ð2Þ
iþ1=2

l
ð3Þ
iþ1=2

l
ð4Þ
iþ1=2

2666666664

3777777775
; ciþ1=2 ¼

c
ð1Þ
iþ1=2

c
ð2Þ
iþ1=2

c
ð3Þ
iþ1=2

c
ð4Þ
iþ1=2

2666666664

3777777775
.

ð4:85Þ
Fig. 52. Comparison of the required CPU time for FV and FD

ENO in three dimensions.
4.12. Applications of ENO and WENO

It is well known in CFD that the solution error for a

given problem strongly depends on the smoothness of

the computational grid. Uniform or smoothly varying

grids always yield smaller solution errors than non-

uniform or non-smooth grids. For example, many

second-order structured or unstructured grid CFD
algorithms often degrade into first order for non-smooth

grids. Analogous behavior should be expected for

higher-order methods. The dependence on grid smooth-

ness of the numerical solutions obtained with ENO was

investigated by Casper and Atkins [176].

The two basic formulations, finite volume (FV) and

finite difference (FD), of ENO were considered by

Casper and Atkins [176]. The FD and FV fourth-order

accurate algorithms were compared for accuracy,

sensitivity to grid irregularities, wave resolution, and

computational efficiency. It was found [176] (see Fig. 51)

that for fourth-order design accuracy the two-dimen-

sional FD ENO numerical solution is approximately

two times more efficient than the FV ENO numerical

solution. The CPU time for three-dimensional imple-

mentation (see Fig. 52) shows more dramatic increase

for the FV formulation. For example, the CPU time

required for FV ENO with fourth-order formal accuracy

is approximately three times higher than the FD

ENO with equivalent formal accuracy. It was shown,
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however, in [176] that the formal accuracy of the FD

ENO can only be achieved with smooth grids. The finite-

volume implementation was found [176] less sensitive to

derivative discontinuities, whether in the computational

mesh or the solution. Therefore, for applications where

the computational domain is known to be sufficiently

smooth and can be suitably structured the FD ENO

algorithm must be the method of choice. Taking,

however, into account that the formal accuracy of the

FD ENO can significantly degrade for non-smooth

meshes [176] (see Fig. 53), for problems with complex

geometries it may pay to use the more expensive FV

algorithm.

The resolving ability and the performance for long-

time integration of the WENO and other numerical

schemes presented in the previous sections was evaluated
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Fig. 53. L1 entropy errors, steady t
for simple linear problems by Ekaterinaris [177]. The

performance of centered and WENO schemes for

aeroacoustics using the full Euler equations was also

considered. In addition, centered schemes with char-

acteristic based filters were compared with WENO

schemes for problems with strong shocks in curvilinear

coordinates. The computed solutions were compared

with available exact solutions.

Long-time integration is important in many practical

applications, such as aeroacoustics, LES and helicopter

rotor calculations where the tip vortex and the rotor

wake need to propagate for long distances. Therefore

the ability of symmetric, centered compact and non-

compact schemes as well as several WENO high-order

accurate stencils was also evaluated in [177], for wave

convection. Sufficiently accurate convection of simple
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Table 3

L2 error at T ¼ 200 for the convection of sinðpx=6Þ with explicit schemes

Explicit Fourth-order Sixth-order Fifth-order Seventh-order

schemes centered centered WENO WENO

L2 error 0.2E00 0:11E� 2 0:12E� 1 0:14E� 3
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A
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p
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Fig. 54. Comparison of the exact solution u0ðxÞ ¼

cosðajxjÞe�bjxj at T ¼ 200 with results computed with explicit

schemes.
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Gaussian pulses, uðx; t ¼ 0Þ ¼ e�ax2 , with 12 points per

waveform (not shown here) was achieved even with

explicit fourth-order accurate in space methods.

Further accuracy test were shown for linear wave

convection by the one-dimensional wave equation

ut þ cux ¼ 0. Numerical solutions with unit wavespeed,

c ¼ 1, were obtained for long propagation times. Time

marching was performed with the third-order accurate

Runge–Kutta method. A time step of Dt ¼ 0:1, which is
below the stability limit of the method, was used for all

tests in order to keep time integration errors at low level.

The first test was propagation of a high-frequency

sinusoidal wave u0ðxÞ ¼ sinðpx=6Þ. Convection of the

sinusoidal wave was obtained with Dx ¼ 0:1 (12 points
per wavelength) and periodic boundary conditions. The

mean square error obtained from explicit space dis-

cretizations with the symmetric fourth-, and sixth-order

accurate schemes and with WENO schemes of fifth- and

seventh-order accuracy, Eqs. (4.43), is shown in Table 3.

It appears that only the schemes with formal accuracy

more than five were capable to obtain sufficiently

accurate solution for long-time integration.

Further evaluation of high-order accurate symmetric

explicit and compact schemes and WENO stencils to

perform linear wave convection was carried out using

the following modulated wave u0ðxÞ ¼ cosðajxjÞe
�bjxj

with a ¼ 3
4
and b ¼ 1

10
as initial condition. For explicit

schemes, time integration was performed until T ¼ 200.

For compact schemes, which have increased resolving

ability, time integration was performed until the final

time T ¼ 500. A comparison of the solutions computed

using explicit high-order symmetric schemes and WENO

stencils with the exact result is shown in Fig. 54. It can

be seen that at least sixth order of accuracy is needed for

long-time propagation. The mean square error of the

solutions computed with different schemes is shown in

Tables 4 and 5. It appears that the ninth-order accurate

WENO stencil provides uniformly high order of

accuracy for smooth initial data.

The mean square error for long-time integration,

T ¼ 500, of high-order compact schemes (see Table 5)

also remains at low levels. It can be seen that compact

schemes with formal order of accuracy more that four

perform adequately. The high-order accurate compact

schemes appear to be particularly suitable for linear

aeroacoustic problems. The computing time of the

explicit schemes was proportional to the width of the
stencil. The computing cost of the eighth- and tenth-

order compact schemes that require pentadiagonal

matrix inversion was the highest and almost double

compared to the time required by the explicit schemes.

However, use of very high-order centered methods may

be required for wave convection over long-time periods.

Symmetric schemes with spectral-type filtering and

characteristic-based filters of Section 3, as well as

WENO schemes off different order of accuracy were

used to compute spread and reflection of a pressure

disturbance. The full nonlinear Euler equations were

used for this test. At the far-field boundaries of the

domain a radiation boundary condition was used. On

the solid surface the normal to the wall velocity

component was set to zero while the density and

pressure were extrapolated from the interior assuming

that qr=qn ¼ qp=qn ¼ 0 or qr=qy ¼ qp=qy ¼ 0. It was

found that it was required to use high-order accurate

approximations of the derivatives at the wall in order to

retain the accuracy of the numerical solution. For

example, the pressure was extrapolated using the

following one-seeded, fourth-order accurate approxima-

tion of the first derivative ðdp=dyÞ1 ¼ ð�25p1 þ 48p2�

36p3 þ 16p4 � 3p5Þ=12. The computed results were

compared with the exact solution which gives the

time variation of an initial pressure disturbance
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Table 4

L2 error at T ¼ 200 for the convection of cosðajxjÞe�bjxj with explicit schemes

Scheme Sixth-order Fifth-order Seventh-order Ninth-order

centered WENO WENO WENO

L2 error 0:4E� 3 0:1E� 2 0:7E� 4 0:7E� 5

Table 5

L2 error at T ¼ 500 for the convection of cosðajxjÞe�bjxj with compact schemes

Compact Fifth-order Sixth-order Eighth-order Tenth-order

schemes WENO centered centered centered

L2 error 0:19E� 3 0:57E� 4 0:92E� 5 0:53E� 5
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Fig. 55. Comparison of WENO scheme computations with the

exact solution.
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pðx; yÞ ¼ expf� ln 2½x2 � ðy� y0Þ
2

g. The initial distur-

bance is located at y ¼ y0, and as it spreads, reflects

from a solid wall at y ¼ 0.

A comparison of the solutions computed on an

artificially distorted mesh with fifth and ninth WENO

schemes (r ¼ 3, and 5, respectively) is shown in Fig. 55.

It can be seen that the solution computed with the

ðr ¼ 5Þ ninth-order accurate WENO scheme on a the

baseline, 100� 50 point grid, which provides 12 points

per wave, is almost indistinguishable from the solution

computed with the ðr ¼ 3Þ fifth-order accurate WENO

scheme on a 200� 100 point grid, refined in both

directions. It is important to note that the full WENO

scheme with the appropriate smoothness measures must

be used for the propagation of the pressure disturbance

with the nonlinear Euler equations. Numerical solutions

of the linearized Euler equations that describe the

propagation of the acoustic-type pressure disturbance

may be possible only with the optimal WENO stencils of

high-order WENO schemes.
A grid-independent solution was obtained for the

solution computed with the ninth-order accurate ðr ¼ 5Þ

WENO scheme since the error does not change for

computations performed with the baseline 100x50 point

grid and refined 200� 100 and 400� 200 point grids.

Therefore, the errors of the baseline grid are mainly due

to the temporal integration scheme. The error of the

solutions obtained with different methods, along the

normal to the wall symmetry line, is shown in Figs. 56

and 57. Similarly to the WENO scheme that required

use of smoothness, characteristic-based filters were used

for the computation of aeroacoustic pulse propagation

with the full nonlinear Euler equations. For the

comparisons of Fig. 56, the same value of the ACM

filter parameter ðk ¼ 0:1Þ was used. It can be seen that
the WENO schemes provide a comparable level of

accuracy with the centered schemes.

The effect of the order of the ACM filter parameter on

the accuracy of the computed solution is shown in

Fig. 57. It can be seen that increase of k deteriorates the
accuracy of the solution. The comparisons of Fig. 57

demonstrate that reduction of the ACM filter parameter

below a certain level does not improve the solution. The

solution obtained with the spectral-type filter has the

smallest error. Among the results compared in Fig. 57,

the solution computed with the spectral-type filter was

the most efficient. The results computed with the ACM

filter required approximately 20% more time compared

to the solution obtained with the spectral filter. The

solution obtained with the WENO scheme required

approximately 30% more time compared to the solution

obtained with the spectral filter. Despite the longer

computing time, both WENO schemes and the ACM

filter provide shock capturing capability which is of

interest in aeronautical applications.

It can be concluded that both centered and WENO

schemes of seventh order or higher are appropriate for

aeroacoustic computations of subsonic flows. For flows

with shocks, however, WENO schemes appear to be
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more appropriate for aeroacoustics, because computa-

tion of these flows require high values of the ACM filter

parameter ðk40:5Þ in order to prevent numerical

oscillations. Numerical solutions obtained for the same

problem on artificially distorted meshes have demon-
strated that the accuracy of the solution does not

deteriorate when the definition of the metrics is

consistent and the metrics were computed with a high-

order method.

In previous comparisons, the third-order accurate

Runge–Kutta of Ref. [81] was used, even though higher-

order or optimized Runge–Kutta methods can further

reduce temporal errors. Furthermore, it was found that

sufficiently accurate computations of aeroacoustic phe-

nomena can be obtained when implicit time marching is

performed with the BW implicit algorithm with p ¼

2� 3 subiterations within each physical time step. The

error of the solutions computed with the explicit RK-3

method and the modified implicit Beam-Warming

algorithm with n ¼ 2 is almost the same. The error of

these computations is shown in Fig. 58.

The performance of WENO and centered schemes

with characteristic-based filters is evaluated for flows

with shocks. The oblique shock reflection problem at

M1 ¼ 2:9 is chosen as test case. The pressure at y ¼ 0:5
computed with WENO schemes of fifth, seventh, and

ninth-order accuracy is compared with the exact

solution in Fig. 59. The computations were performed

on a uniformly spaced 200� 50 point grid in a domain

�2:0pxp2:0; 0pyp1:0. At the left inflow boundary,

free stream was specified. At the right outflow boundary,

all quantities were extrapolated. On the solid wall

at y ¼ 0, slip boundary condition was specified, and

at the top the flow quantities were specified as:

r ¼ 1:69997; u ¼ 2:61934; v ¼ �0:506; p ¼ 1:528. Suffi-

cient number of ghost points, depending on the order

of the scheme, were used at the edges of the domain in

order to retain the formal order of the scheme. For

example, computations with the seven-point wide

WENO5 scheme required three ghost points while
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solutions with the sixth-order accurate ACM method

require two ghost points.

At steady state, an oblique incident shock and a

reflected shock were generated. The comparison of the

computed pressure with the exact solution of Fig. 59

shows that as the order of the WENO scheme increases

the computed solution approaches the exact solution.

For all computations, the shocks were captured within

two cells. The pressure field obtained from the numerical

solutions with the fourth-order accurate compact

centered scheme with k ¼ 0:7 and the fifth-order

accurate WENO scheme on an artificially distorted

mesh is shown in Fig. 60. Both solutions were computed

with the explicit time marching scheme. It can be seen

that both methods can capture the oblique strong shock

without oscillations. Furthermore, the artificially dis-

torted mesh does not cause oscillations.

The numerical solution for the same problem was also

computed with the implicit BW time marching scheme.

The convergence rates of the numerical solutions

obtained for different number of subiterations is shown

in Fig. 61. For reference, the convergence rate of the

solution obtained with the explicit third order Runge–

Kutta method of Ref. [81] is shown in the same figure.

At convergence all solutions were the same and

computed pressure and density obtained from implicit

or explicit time marching were almost identical. A

comparison of the computed pressure at y ¼ 0:5 from
the solution obtained with the fifth-order accurate

WENO scheme and the solutions obtained with different

values of the ACM parameter is shown in Fig. 62.

It appears that the computed solution is sensitive

to the selection of the ACM parameter. Furthermore,

the choice of the upwind TVD limiter affects the

solution.
Computations of supersonic flows over a cylinder at

various Mach numbers for Ref. [177] are shown next.

These solutions were obtained using WENO schemes.

An algebraically generated 181�51 point grid was used

for this computation of supersonic flows over the

cylinder. Similarly to the shock reflection case sufficient

number of ghost points depending on the order of the
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Fig. 63. Computed entropy and pressure fields with the ninth-

order accurate WENO scheme at M1 ¼ 5:0.
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scheme was used at the edges of the domain. At the

inflow free stream supersonic flow was specified. At

the outflow all quantities were extrapolated from the

interior. On the cylinder solid surface the normal to the

surface velocity component was set to zero and all the

other quantities were extrapolated from the interior

using high-order extrapolation and assuming that the

normal derivative is zero.

The computed pressure and entropy fields at M1 ¼

5:0 are shown in Fig. 63. The resolution of the strong
shock generated by the high-speed flow is captured

without oscillations. Similar to the oblique shock

computations of the previous section the shock for the

supersonic cylinder flow (see Fig. 63) is captured within

two cells. The convergence rate obtained at different

Mach numbers, order of accuracy, and for baseline

(91� 51) and refined (181� 101) grids is shown in

Fig. 64. All computations were obtained at the same

time step and the third-order TVD Runge–Kutta

method of Ref. [81]. For all cases, the convergence was

satisfactory and the solution practically remained un-

changed when the residuals drop four orders of

magnitude. A comparison of the computed pressure

distributions for the grid line on the symmetry axis that

passes through the stagnation point is shown in Fig. 65.

It can be seen that the shock is captured within two

computational cells and the solution is free from

oscillations.

Inviscid flows solutions over a NACA-0015 airfoil

were computed using the fifth-order accurate WENO

scheme. The computed pressure fields at transonic and

supersonic speed are shown in Figs. 66 and 67. The

solutions were computed with the explicit time marching

scheme on a 261� 51 point, C-type grid. The airfoil grid
included three ghost points at the edges of the domain in

order to use the WENO5 scheme for the entire domain

without dropping the stencil accuracy at the airfoil

surface and the wake. The supersonic and transonic flow

computations were obtained on the same grid. For both

flow speeds, a smooth solution is obtained on the highly

stretched, high aspect ratio C-type grid.

The computed pressure field at M1 ¼ 2:0 is shown in
Fig. 66. The computed pressure field shows adequate

resolution of the leading edge bow shock and the two
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shocks at the trailing edge despite of the coarseness of

the grid. The same type of inflow/outflow and solid wall

boundary conditions as the supersonic cylinder flow was

used. At the wake of the C-type grid averaging was used.

For the transonic flow computation at M1 ¼ 0:8, the
shocks of the upper and lower surface shown by the

pressure contours of Fig. 67 are well resolved. For this

computation the inflow and outflow boundary condi-

tions were specified using one-dimensional Riemann

invariants. A comparison of the computed surface

pressure coefficient for transonic flow over the NACA-

0012 airfoil with the experimental data is shown in

Fig. 68. The overall agreement of the computed inviscid
solution with the experiment is satisfactory and the

shock is resolved within two cells.

Numerical solutions of two-dimensional viscous

transonic flow over airfoils were obtained using a

second-order accurate FV ENO or WENO scheme by

Yang et al. [178]. The LU-SGS scheme of Section 4.3

was used for time integration to avoid stability limita-

tions from the highly clustered viscous meshes. The

computations of Yang et al. [178] showed sharp

capturing of discontinuities (see Fig. 69) without

oscillations. It was found (see Fig. 70) that after the

residuals of the ENO2 scheme have decayed for three

orders of magnitude the convergence leveled off. In

contrast, as expected (see remarks in Section 4.4) a

monotone convergence was achieved with the WENO2
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Fig. 72. Steady pressure distributions for ONERA M6 wing at M1 ¼ 0:8395, a ¼ 3:06� and Rec ¼ 2:6� 10
6.

Fig. 73. Upper surface contours for ONERA M6 wing at

M1 ¼ 0:8395, a ¼ 3:06� and Rec ¼ 2:6� 10
6.
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scheme. The computed surface pressure distributions

from the ENO and WENO algorithms (see Fig. 71) were

almost indistinguishable. Very good agreement with

the measured pressure coefficient distribution was

found in [178] for three-dimensional flow over the

ONERA M6 computed with the WENO2 scheme.

Comparisons of the surface pressure distribution are

shown in Fig. 72. The computed surface pressure

distribution and the convergence rate are shown in

Figs. 73 and 74, respectively.

The resolution and efficiency of high-order accurate

WENO schemes for computing flows containing both

discontinuities and complex flow features was recently

demonstrated by Shi et al. [168]. The first representa-

tive numerical example was the double Mach reflec-

tion, a problem that includes strong shock waves

and very complex flow features. This problem was

initially proposed by Woodward and Colella [179] and
has been used extensively in the literature as a test

for high-resolution schemes. A Mach 10, right moving

shock at an angle of 60� is reflected from a wall (for

more details see [179]). The flow is computed as inviscid

and the results are displayed in Fig. 75 at t ¼ 0:2
in the domain ½0; 3
 � ½0; 1
. Three different uniform
meshes h ¼ 1

240
, h ¼ 1

480
, and h ¼ 1

960
were used in [168].

The computed solutions are compared in Fig. 75.

It is clear that WENO9 with h ¼ 1
240

produces qua-

litatively the same resolution as WENO5 with h ¼ 1
480
.

The same is true for WENO5 with h ¼ 1
960

and

WENO9 with h ¼ 1
480. It is evident that the resolu-

tion increases consistently with the order of accu-

racy and mesh refinement. Furthermore, the ability to

obtain the same resolution with half the mesh by

increasing the order of the method (compare WENO5

with h ¼ 1
960

and WENO9 with h ¼ 1
480
) is clearly

demonstrated.
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The second problem considered in [168] is the

Rayleigh–Taylor (RT) instability. This instability hap-

pens on an interface between fluids with different

densities due to the motion of the heavy fluid. The

numerical solution of the RT problem demonstrates the

ability of WENO schemes to consistently capture

smooth, complex flow features with increased resolution

either by grid refinement or the increase of the order of

the method. Inviscid flow in a computational domain

½0; 14
 � ½0; 1
 was computed in [168] with the heavy fluid
with density r ¼ 2 below, the interface at y ¼ 1

2
, and the

light fluid with r ¼ 1 above the interface. The solutions
of Fig. 76 were computed on uniform meshes with

h ¼ 1
240
, 1
480
, 1
960
, and 1

1920
. Again the WENO9 scheme

yields the same resolution with the WENO5 scheme at

double grid resolution. In both cases of Figs. 75 and 76,
the comparable resolution obtained with the WENO9

scheme using half the number of grid points in each

direction than WENO5 implies significant saving in

computing time since the WENO9 scheme needs only

approximately 30% more CPU time than the WENO5

scheme.

The dynamics of shock–vortex interactions and the

coupling of counter-rotating compressible vortices

interacting with a planar shock wave were investigated

by Grasso and Pirozzoli in [180–182]. The numerical

solutions of the inviscid, compressible flow equations

was obtained using a finite volume WENO scheme for

Cartesian-type meshes. The simulations for the single

vortex–shock wave interaction [180] initiated with a

homoentropic Taylor vortex. Results from the simula-

tions of [180] are shown in Figs. 77 and 78. Fig. 77 shows
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Fig. 77. Computed Schlieren for shock–vortex interaction.

Fig. 78. Computed pressure field f
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the evolution of shock–vortex interaction with the

computed Schlieren plot for a shock at Ms ¼ 1:2 and
vortex Mach number Mv ¼ 0:8. Fig. 78 shows the

computed pressure contour plots at the same times with

Fig. 77.

The dynamics of the interaction of shock wave at

Ms ¼ 5:0 colliding with a counter-rotating vortex pair at
Mv ¼ 0:26 from [181] are shown in Fig. 79. The

numerical Schlieren for shock wave–colliding vortex

pair interaction at Mv ¼ 0:9, Ms ¼ 1:2 [182] is shown in
Fig. 80. The acoustic pressure field computed in [182] at

Mv ¼ 0:1, Ms ¼ 1:2 is shown in Fig. 81. It can be seen
that in all cases the dynamics of the interaction and the

flowfield structure is very complex. The computed

solutions in [180,181] were found in very good agree-

ment with measurement and analytic solutions from

acoustic analogies. These results show that high-order

WENO schemes are appropriate for the computation of

noise. Further investigation of three-dimensional shock

ring–vortex interaction was carried out by Pirozzoli

[183] using the compact WENO scheme he developed in

[173]. The computed complex interaction of the impact
or shock–vortex interaction.
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Fig. 79. Computed pressure field for shock counter–rotating vortex pair interaction.
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Fig. 80. Shock wave–colliding vortex pair interaction: numerical Schlieren at Mv ¼ 0:9, M�
s ¼ 1:2, d ¼ 4rv-Type-V interaction. SW,

shock wave; SN, diffracted shock.
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of a vortex ring Mv ¼ 0:25 on a planar shock Ms ¼ 1:5
is shown in Fig. 82.

Adams [184] used the hybrid compact-ENO finite-

difference scheme of [175] to perform direct simulation

of the flow over a compression ramp. The scheme used

for this DNS is fifth-order accurate in smooth flow

regions and around the discontinuities becomes the
fourth-order ENO scheme. The viscous terms in [175]

are discretized with the sixth-order accurate compact

finite-difference scheme of Lele [100]. Time marching of

the DNS in [184] is performed with a RK3 method.

Computed Schlieren from the DNS in Fig. 83 are in

good agreement with similar measurement shown for

comparison in Fig. 84. The computed density field is
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Fig. 81. Shock wave–colliding vortex pair interaction: acoustic pressure field at Mv ¼ 0:1, M�
s ¼ 1:2, d ¼ 4rv-Type-I interaction.

�0:1pp0p0:5, 72 contour levels. Dashed lines stand for p0p0, while solid lines stand for p0X0.
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shown in Fig. 85. The sequence of shock evolution

obtained from the DNS of [175] is shown in Fig. 86. The

good agreement of the DNS of [184] with the experi-

ments demonstrates that high-order accurate ENO

discretization yields the necessary resolution and keeps
the numerical diffusion at a low level. These are key

ingredients required for accurate capturing of turbulent

fluctuations in compressible turbulence DNS and LES.

Additional computations with ENO and WENO

schemes can be found in [185–190].
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Fig. 82. Impact of a vortex on a planar shock wave for

Ms ¼ 1:5, Mv ¼ 0:25, j0 ¼ 3p=4 at t ¼ 8. The gray shading

represents the 0.01 isosurface of l2; the lighter shading

represents the �0.1 isosurface of r � u, which has been cut at

the intersection with the symmetry plane.

Fig. 83. Flow-field Schlieren imitation, krrk contours, (a)

instantaneous x2-average, (b) x2-average and time average

using 100 samples.

Fig. 84. Flow-field experimental Schlieren visualization of a 25�

compression ramp at M1 ¼ 2:9, Rey ¼ 9600, provided by

A. Zheltovodov, ITAM, Novosibirsk.

Fig. 85. Density at the wall, in the plane x2 ¼ 2:9 and 4 cross-
flow planes; shock-surface with qxi

ui ¼ �0:4.
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5. The discontinuous Galerkin (DG) method

Generation of three-dimensional meshes even in

domains with moderate complexity, such as a wing

body junction for example, is not trivial. On the other

hand, the performance of most high-resolution accurate

methods depends on the smoothness of the grid. The

difficulty in generating smooth-structured grids for

complex geometries has promoted the development of

finite-volume algorithms for unstructured grids

[191–195]. However, most of these unstructured grid

methods are second-order accurate. High-order finite-

volume schemes were pioneered by Barth and Freder-

ickson [131] with the k-exact finite-volume scheme that

can be used for arbitrary high-order reconstruction in

triangular or tetrahedral meshes. The implementation of

ENO for unstructured grids was developed by Abgrall

[164], while WENO schemes for triangular meshes were

developed by Friedrich [166] and Hu and Shu [196].

Theoretically, the k-exact approach [131,196], or other

approaches [164] can be used to obtain arbitrarily high-

order accurate finite-volume schemes with high-order

polynomial data reconstructions. However, in practice
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Fig. 86. Sequence of shock evolution (iso-contours) of krrk and velocity vectors at x2 ¼ 0:72 for a sequence of equal time steps
between tl ¼ 309:00 and tr ¼ 325:34; sequence from bottom to top and left to right (numbers 1–12); the marker indicates the sensor

position for Fig. 14; flow direction is from bottom up.
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higher than linear reconstructions are not used in three

dimensions because of the difficulty to construct non-

singular stencils and the large memory required to

store the reconstruction coefficients. It was shown by

Delanaye and Liu [197] that for the third-order

(quadratic reconstruction) FV scheme in three dimen-

sions, the average size of the reconstruction stencils is

about 50–70. The size of reconstruction stencils increases

nonlinearly with the order of accuracy and it was

estimated that for the fourth-order FV scheme the

stencil size would be approximately 120.

The high-order accurate conservative scheme called

the discontinuous Galerkin (DG) method developed by

Cockburn et al. in a series of papers [198–201] shows

promise for high-resolution simulations in fully un-

structured meshes. The DG method assumes a high-

order expansion for the distribution of the state

variables for each element and solves for the coefficients

of the expansion polynomials. The resulting state

variables are usually not continuous across the element

boundaries. Therefore, the fluxes through the element

boundaries are computed using an approximate Rie-

mann solver and the residual is minimized with a

Galerkin approach. It is the use of Riemann fluxes

across element boundaries that makes the DG method

fully conservative.

5.1. DG space discretization

The DG method is briefly described in this section.

Further information and more details can be found in

the original references [200,205,206] and the reviews of
[45,201]. For each time t 2 ½0;T 
 the approximate

solution, uh, of hyperbolic equations in conservation

law form, qtuþ divFðuÞ ¼ 0, is sought in the following

finite-element space of discontinuous functions Vh

Vh ¼ ffh 2 L1ðOÞ : fhjK 2 VðKÞ 8K 2 Thg, (5.1)

where Th is a discretization of the domain O using

triangular or quadrilateral elements and VðKÞ is the

local space that contains the collection of polynomials

up to degree k.

The development of the DG method starts from weak

formulation of hyperbolic-type governing equations

d

dt

Z
K

uðx; tÞfðxÞdx

¼

Z
K

F ðuðx; tÞÞ � rðfðxÞÞdx

�
X
e2qK

I
e

F ðuðx; tÞÞ � ne;KfðxÞdG, ð5:2Þ

where fðxÞ is any sufficiently smooth function and ne;K

denotes the outward, unit normal to the face or edge e.

The stiffness matrix integral at the left-hand side of

Eq. (5.2) is evaluated numerically using Gauss–Radau

integration rules. The integrals on the right-hand side of

Eq. (5.2) are evaluated using quadrature rules as follows:Z
e

F ðuðx; tÞÞ � ne;KfðxÞdG

�
XL

l¼1

clF ðuðxel ; tÞÞ � ne;KfðxelÞjej, ð5:3Þ
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Z

K

F ðuðx; tÞÞ � rðfðxÞÞdx

�
XJ

j¼1

ojF ðuðxKj ; tÞÞ � rðfðxKjÞÞjKj. ð5:4Þ

The line integrals of Eq. (5.3) are computed using

appropriate high-order Gaussian quadrature. For ex-

ample, for a third-order polynomial basis a quadrature

rule that integrates exactly at least sixth-order poly-

nomial is used. In general, a kth order DG method

(k � 1 order polynomial reconstruction) requires a 2kth

order quadrature formula for the surface (line) integrals

of Eq. (5.3), and a ð2k � 1Þth order quadrature formula

for the volume integrals of Eq. (5.4).

The data are assumed discontinuous across the

interfaces of the continuous domain and at each

interface two values are available. Therefore, the flux

F ðuðx; tÞÞ is replaced by a suitable numerical fluxeFe;K ðx; tÞ for the approximate solution uh and the test

function fh 2 V ðKÞ. Using eFe;K ðx; tÞ in Eqs. (5.3) and
(5.4) the approximate solution uh is given by

d

dt

Z
K

uhðx; tÞfhðxÞdx

¼
XJ

j¼1

ojF ðuhðxKj ; tÞÞ � rðfhðxKjÞÞjK j

�
X
e2qK

XL

l¼1

cl
eFe;K ðuðxel ; tÞÞ � ne;KfðxelÞjej,

8fh 2 V ðKÞ 8K 2 Th, ð5:5Þ

where time advancement of Eq. (5.5) is performed with

the third-order accurate TVD Runge–Kutta method of

[81].

The major difference of the GD formulation with a

standard modal or node-based Galerkin finite-element

method is that the expansion in each element is local

without any continuity across the element boundaries.

The value of the numerical flux eFe;K ðx; tÞ at the edge of
the boundary of the element K depends on two values of

the approximate solution, one from the interior (right)

of the element K, uR ¼ uhðx
intðKÞ; tÞ, and the other from

the exterior (left) of the element K, uL ¼ uhðx
extðKÞ; tÞ.

Any consistent, conservative exact or approximate

Riemann solver can be used to obtain the numeri-

cal flux eFe;K ðuðx
intðKÞ; tÞ; uðxextðKÞ; tÞÞ or eFe;K ðu

L; uRÞ as

follows

eFe;K ðu
L; uRÞ ¼ 1

2
½F ðuLÞ � ne;K þ F ðuRÞ � ne;K

� FnðuL; uRÞ
, ð5:6Þ

where FnðuL; uRÞ is the dissipative part of the numerical

flux. The computationally efficient local Lax–Friedrichs

flux is used in many applications. The flux F is split as

F ¼ Fþ þ F� where F ¼ F þ au where a ¼ l and l is
the maximum eigenvalue of the flux Jacobian. For the
linearized Euler equations the eigenvalues are constant

and the derivatives are continuous for the nonlinear

case, however, in order to obtain continuous higher

derivatives a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ l2

p
with � ¼ 0:05. The DG method

can be applied for discretizations on all triangular,

quadrilateral or mixed-type of elements. Expansion

bases of different order for triangular and quadrilateral

elements are shown next.

Large portion of computing resources during the

implementation of the DG method is devoted for the

evaluation of integrals, such as the mass and stiffness

matrices using quadrature rules. For linear systems of

hyperbolic equations, such as the linearized Euler

equations, the computing cost of the DG method can

be significantly reduced using the quadrature-free DG

method. Then time integration of the semi-discrete DG

formulation with RK3 or RK4 yields the quadrature-

free Runge–Kutta DG approach of Atkins and

Shu [208].

5.2. Element bases

For the general nonlinear case, the order of accuracy

of the DG method (see Ref. [45] and references therein)

is at least k þ 1=2 if polynomials of degree at most k are

used as basis functions. Furthermore, it was shown (see

Ref. [45]) that for linear problems that for canonical

semi-uniform triangular grids the order of accuracy is

ðk þ 1Þ. For simplicity in the rest of this section, the

method is called ðk þ 1Þth order accurate if the basis

functions are polynomials of degree at most k.

The approximate solution within each element is

expanded in a series of local bases functions (poly-

nomials) as follows

uhðx; y; tÞ ¼
Xd

j¼1

cjðtÞP
k
j ðx; yÞ, (5.7)

where cjðtÞ, j ¼ 1; 2; . . . ; d are expansion coefficients or

degrees of freedom for each element, to be evolved in

time, and Pk
j ðx; yÞ are polynomial bases of degree k the

most. In two dimensions, the range of d, or number of

polynomials in Eq. (5.7) (also the number of nodes on a

triangle for nodal expansions) is related to the degree of

the polynomial by d ¼ ðk þ 1Þðk þ 2Þ=2. For example,
cubic reconstruction k ¼ 3 requires d ¼ 10 e.g. 10 nodes

(see Fig. 87).

The value of d for bases in two and three dimensions

(triangles or tetrahedra) is given by

d ¼
nþ k

k

� �
¼
ðnþ kÞ!

n!k!
, (5.8)

where k is the order of the polynomial Pk
j and

j ¼ 1; . . . ; d. It can be seen that in three dimensions the
third-order basis includes 20 polynomials and the fifth-

order basis 56 polynomials. It appears therefore, that for
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(b) 3rd order polynomial
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Fig. 87. Nodal points for polynomial bases. P1, P3, and P5

bases on triangular meshes.
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Fig. 88. Reference element for first-order polynomial basis.
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Fig. 89. Reference element and nodal points for fifth-order

polynomial basis.
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realistic, three-dimensional problems, it could be very

intensive computationally to achieve accuracy higher

that fourth order.

In two dimensions, a first-order basis ðd ¼ 3Þ,

P11 ¼ 1� 2y, P12 ¼ 2xþ 2y� 1, P13 ¼ 1� 2x, can be

used to achieve second-order accuracy. Each of these

polynomials (see Fig. 88) takes unit value at one node,

located in the middle of an edge, and zero value at the

other nodes located at the middle of the other edges. The

first-order polynomials P11, P12, P13 are orthogonal

ð
R

el
PiPj ¼ 0; iajÞ and the mass matrix resulting from

the integration at the left-hand side of Eq. (5.2) is

diagonal. For the first as well as the higher-order bases

all calculations of Eq. (5.5), except the numerical flux

evaluation, are carried out on the reference element. The

numerical flux computation along the edges of the

element, which depends on the neighboring element, can

be carried out at the physical space.

Third- and higher-order polynomial nodal bases in

two dimensions can be systematically generated with

Lagrange interpolation in triangular coordinates

x; y; t ¼ 1� x� y. More details on polynomial bases

can be found in [40,42,43]. The general form of

Lagrange interpolation in triangular coordinates is

given by

PLðx; y; tÞ ¼ LiðxÞLjðyÞLkðtÞ, (5.9)

where LmðxÞ are one-dimensional ðm� 1Þ order

Lagrange polynomials [43] and L ¼ Lði; j; kÞ (see

Fig. 89) denotes the nodal index. For example, in

Fig. 89 at the nodal index Lð2; 3; 3Þ the base polynomial
is defined as

Pð2;3;3Þðx; y; tÞ ¼ 5x
yðy� 1=5Þ

ð 2
25
Þ

tðt� 1=5Þ

ð 2
25
Þ

. (5.10)

The fifth-order polynomial basis is also non-orthogo-

nal and the mass matrix is computed using Gauss Radau

integration. Note that the P1j and P3j bases can be

constructed using the procedure followed for the

construction of the P5j basis. The bases based on

Lagrange interpolation for triangular elements have

good condition number [43]. In addition, they offer
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Fig. 90. Reference element with nodal points for third-order polynomial basis and isoparametric mapping for the arbitrary shape

quadrilateral element in physical space.
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implementation advantages compared to hierarchical

bases, which are more appropriate for multigrid [207],

because for these bases the nodal values are known.

Space discretization can be in addition be obtained

using quadrilateral isoparametric elements of arbitrary

shape (see Fig. 90). The reference element is a square

(see Fig. 90) with vertices at the points ð�1;�1Þ;
ð1;�1Þ; ð1; 1Þ; ð�1; 1Þ. In Fig. 90, the physical space

arbitrary shape quadrilateral and the nodal points of

the third-order accurate polynomial basis on the

reference element are also shown. The coordinates xk
j ,

j ¼ 1; 2; k ¼ 1; 2; 3; 4 ðxk
1 ¼ xk; xk

2 ¼ ykÞ of the arbitrary

shape quadrilateral elements in the physical space are

related to the square reference element coordinatesbxj ðbx1 ¼ bx; bx2 ¼ byÞ through the map
xj ¼

X4
k¼1

bf kðbx1; bx2Þxk
j , (5.11)

where bf kðbx1; bx2Þ are first-order Lagrange polynomialsbf kðbx1; bx2Þ ¼ ð1þ xk
1bx1Þð1þ xk

2bx2Þ=4. The basis polyno-
mials Pk

i ðx; yÞ 2 Qk for finite-element discretization with

quadrilateral elements are tensor products of appro-

priate order one-dimensional Lagrange polynomials.

For example, the basis with third-order accurate

polynomials is P3i ðx; yÞ ¼ LjðxÞLkðyÞ; i ¼ 1; . . . ; 16;
j; k ¼ 1; 2; 3; 4.
5.3. Arbitrary high-order DG schemes

The ADER (Arbitrary high-order scheme which

utilizes the hyperbolic Riemann problem for the advec-

tion, of the higher-order DERivatives) can be applied

for DG numerical solutions of linear hyperbolic systems

to obtain a quadrature-free, explicit single-step method

of arbitrary order of accuracy in both space and time.
Note that for the nonlinear case, the ADER-DG

scheme requires Gaussian quadratures of suitable order

of accuracy. The ADER approach of Titarev and Toro

[209] is based on the solution of the generalized

Riemann problems (GRPs) at the cell boundaries and

application of the Lax-Wendroff procedure for highly

accurate time integration of the numerical flux.

It was shown numerically by Dumbser and Munz that

the ADER-DG scheme is 3N þ 3 order accurate for Nth

order basis functions.

The main ingredients of the ADER-DG-Discretiza-

tion are:
�
 Taylor expansion in time of the solution.
�
 Use of the Lax-Wendroff procedure to replace time

derivatives by space derivatives.
�
 Solution of generalized Riemann problems (GRP) to

approximate space derivatives.

5.4. Analysis of the DG method for wave propagation

Hu et al. [210] carried out a study of wave

propagation properties of the semi-discrete DG method

for conservation laws with linear flux given by

Fnumðu1; u2; nÞ ¼ eAþavu1 þ eA�avu2, where eA ¼Pd
k¼1Aknk,

the averages are defined as eAþav ¼ eAþajeAj2
, eA�av ¼ eA�ajeAj2

, and

a ¼ 0 yields a centered flux while a ¼ 1 yields the Roe
flux. Considering the approximate solution uh is written

as an expansion of the local basis set uhðx; tÞ ¼PN�1
l¼0 clðtÞvlðxÞ it was shown in [210] that for the one-

dimensional scalar advection equation ut þ cux ¼ 0,

with exact dispersion relation o ¼ ak, the numerical

dispersion relation for an upwind numerical flux ða ¼ 1Þ
with the DG discretization is determined by

detð�iOQþ 2e�iKN1 þ 2N0Þ ¼ 0. (5.12)
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The solution of the numerical dispersion relation yields

complex values for the numerical propagation fre-

quency, O ¼ Or þ iOi. In the numerical propagation

frequency, the imaginary part is negative and represents

the numerical damping inherent in the DG discretization

process.

The solution of the numerical dispersion relation, Eq.

(5.12) for a third-order DG method involves three

modes, one physical mode and two parasitic modes. It

was found that the numerical dispersion relation

deviates from the exact one beyond K � N, where N is

the order of the scheme.

Important conclusions of the analysis of Hu et al.

[210] are:
�
 Increase of the order of the scheme significantly

reduces the dissipation error.
�
 The sixth-order scheme is optimal for scalar advec-

tion in the sense that it is the minimal order for which

the dispersion and dissipation errors are less than

0.5% for wavenumber K up to approximately N.
�
 The dissipation error imposes a relatively more

stringent condition on the accuracy of the scheme

than does the dispersion error.

For two-dimensional advection (two-dimensional

wave equation) ftt � c2r2f ¼ 0 the numerical disper-
sion relation was found as

detð�iOQþ 2½N0 þ e
�iK cosWN�1 þ e

iK cosWNþ1


þ 2g½M0 þ e
�iK sin gWM�1 þ e

iK sin gWMþ1
Þ ¼ 0, ð5:13Þ

where the value of O is function of the wavenumber K

and the angle W. An important conclusion of this

analysis is that the wave propagation is anisotropic

and the dependence on wave propagation angle is

stronger for the higher wavenumbers.

5.5. Dissipative and dispersive behavior of high-order DG

method

In a previous section, the dissipative and dispersive

properties of the DG discretizations were analyzed and

demonstrated for linear aeroacoustic problems. A

systematic analysis of the DG method for linear wave

propagation with very short-wave lengths was recently

presented by Ainsworth [211]. This analysis targeted

electromagnetic wave propagation. Efficient and accu-

rate resolution of electromagnetic waves without ex-

cessive numerical dissipation or dispersion is important

in the context of other high-frequency applications such

as magneto-gas dynamics (MGD). The most promising

approach for wave propagation is obtained with higher-

order schemes such as spectral element methods

[212,213]. Higher-order standard Galerkin finite-element

methods were also used in the past by Astley et al. [214],
Ihlenburg [215], Thomson and Pinsky [216]. More

recently, high-order DG finite-element methods

[45,217–220] were applied and analyzed for wave

propagation.

It was found that for the small wavenumber limit

hk ! 0 the DG method gives a higher order of accuracy

than the standard Galerkin methods. Hu and Atkins

[220], for example, concluded that the dispersion

relation of the scalar advection equation for an Nth

order DG method is accurate to order 2N þ 3 in hk for

the dispersion error and 2N þ 2 for the dissipation error.

A more systematic study of the dissipative and

dispersive behavior of the DG method that gives sharp

error estimates was carried out by Ainsworth [211].

Ainsworth’s estimates are very sharp and agree with

a posteriori error estimates of Hu and Atkins [220].

The main conclusions of the analysis performed by

Ainsworth [211] are
(1)
 As the order N is increased, the behavior of the error

passes through three different phases depending on

the size N relative to hk.
(2)
 Pre-asymptotic regime 2N þ 1ohk � OðhkÞ1=3. The

resolving ability of the method is inadequate and the

relative error tends to oscillate without decay.
(3)
 The transition zone where hk � OðhkÞ1=3o2N þ 1

ohk þ OðhkÞ1=3. The relative error is of order unity

and decreases at an algebraic rate N�1=3.
(4)
 Asymptotic regime where N is large compared to hk

2N þ 14hk þ OðhkÞ1=3. The relative error reduces at

a super-exponential rate.
An exponential convergence on the envelope 2N þ

1 � hk was also found in Ref. [211]. Namely reduction

of the mesh-size to the limit hk51 is not possible for

high frequencies. It was shown, however, that increasing

the order N on a fixed mesh is more effective than

reducing the mesh size. Furthermore, it was concluded

[211] that it is inefficient to increase the order N much

beyond the threshold 2N þ 14hk þ OðhkÞ1=2. A more

practical approach to resolve problems where hkb1 is to

work on the envelope of the region where the super-

exponential convergence sets in. For these cases, the

order of the method must be chosen so that 2N þ 1 �

khk where k41 is a constant. Ainsworth [211] showed
that the relative error rN decays at an exponential rate

as N !1.

5.6. Limiting of DG expansions

Limiting operators LPh on piecewise linear DG

expansions uh are constructed in such a way that they

satisfy the following properties:
(1)
 Accuracy: if uh is linear, then LPhuh ¼ uh.
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(2)
 Conservation of mass: for every element K haveZ
k

LPkuh dV ¼

Z
k

uh dV . (5.14)
(3)
 Slope limiting: The gradient of LPhuh is not bigger

than that of uh for each element K.
Theoretical analysis of the slope limiting operators can

be found in Cockburn and Shu [198] and Cockburn

et al. [200].

5.6.1. Rectangular elements

The P1 expansion of the approximate solution

uhðx; y; tÞ inside rectangular elements ½xi�1
2
; xiþ1

2

 �

½yi�1
2
; yiþ1

2

 is

uhðx; y; tÞ ¼ uðtÞ þ uxðtÞfiðxÞ þ uyðtÞcjðyÞ, (5.15)

where

fiðxÞ ¼
x� xi

ðDxi=2Þ
; cjðyÞ ¼

y� yi

ðDyj=2Þ
(5.16)

and the degrees of freedom that are evolved in time are

uðtÞ; uxðtÞ; uyðtÞ.

For the scalar equation, limiting for these quadrilat-

eral element expansion is performed on ux and uy using

the difference of the means.

For example, ux is replaced by

mðux; uiþ1;j � ui; j ; ui; j � ui�1; jÞ, (5.17)

where m is the TVB corrected minmod function defined

as

mða1; a2; . . . ; amÞ

¼
a1 if ja1jpMðDxÞ2;

mða1; a2; . . . ; anÞ otherwise

(
ð5:18Þ

and m is the total variation diminishing (TVD) minmod

function defined as

mða1; a2; . . . an . . . ; aNÞ

¼
smin1pnpN janj if s ¼ signða1Þ ¼ � � � ¼ signðaNÞ;

0 otherwise:

(
ð5:19Þ

The TVB correction is introduced in order to avoid

unnecessary limiting near smooth extrema where the

expansion coefficients (or degrees of freedom) ux; uy are

on the order of OðDx2Þ;OðDy2Þ, respectively. The

numerical results are not usually sensitive to the choice

of the constant M. The suggested value for this constant

[206] is M ¼ 50. Similarly, uy is replaced (limited) by

mðuy; ui; jþ1 � ui; j ; ui;�ui�1; jÞ.

For systems, such as the Euler equations, limiting is

performed in the local characteristic variables as follows:
�
 The left and right eigenvector matrices R�1 and R,

which diagonalize the Jacobian A ¼ qf ðuÞ=qu, are

evaluated at the average state ui; j in the element ij in

the x and y directions as R�1AR ¼ L where L is the

diagonal matrix that contains the eigenvalues of the

flux Jacobian. The columns of R are the right

eigenvectors of A and the rows of R�1 are the left

eigenvectors.
�
 All quantities needed for limiting are transformed to

the characteristic field by left multiplying by R�1. For

the system version of the limiter given by Eq. (5.17)

for example, the vectors uxi; j
; ðuiþ1; j � ui; jÞ; ðui; j �

ui�1; jÞ are transformed to the characteristic field.
�
 The limiter of Eq. (5.17) is applied on each

component of the characteristic variables vector.
�
 The limited (replaced) values are transformed back

to the original conservative variables by multiplying

by R.

5.6.2. Triangular elements

For the P1 case, the following expansion inside the

triangle K is used for the approximate solutions

uhðx; y; tÞ

uhðx; y; tÞ ¼
X3
i¼1

uiðtÞfiðx; yÞ, (5.20)

where the degrees of freedom or expansion coefficients

uiðtÞ are the values of the numerical solution at the

midpoints of the edges. The basis function is a linear

function that takes unit value at the midpoints mi of

the ith edge and zero value at the midpoints of the other

two edges.

The slope limiting operator for triangular elements

is constructed as follows. Consider the triangle K0 of

Fig. 91 where limiting is performed and the neighboring

triangles K1;K2 and K3. Suitable choices of the triads of

the vectors c0m1; c0m2; c0m3; c0c1; c0c2; c0c3 as shown in
Fig. 91 yields the following geometrical decomposition:

ðc0m1
!!!

Þ ¼ a1ðc0c1
!!!
Þþ a2ðc0c2

!!!
Þ. (5.21)

In this decomposition, the vector joining the barycenter

c0 with the middle of an edge is between the vectors

joining the barycenter c0 with the barycenters of the

neighboring triangles. The parameters a1 and a2 are
positive coefficients that depend on the geometry.

Furthermore, for any linear function have the

expansion

uhðm1Þ � uhðc0Þ ¼ a1½uhðc1Þ � uhðc0Þ


þ a2½uhðc2Þ � uhðc0Þ
 ð5:22Þ

and the averages over the triangles are

uKi ¼
1

jKij

Z
Ki

uh dV ¼ uhðciÞ; i ¼ 0; 1; 2; 3. (5.23)
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Fig. 91. Geometric definitions for arbitrary triangular mesh.
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Therefore

uh
K0 ðm1Þ � uhðm1Þ � uK0

� a1ðuK1 � uK0 Þ þ a2ðuK2 � uK0 Þ

� DuK0 ðm1Þ. ð5:24Þ

For a piecewise linear function uh in K0 and the three

midpoints m1;m2;m3 obtain

u
K0
h ðx; yÞ ¼

X3
i¼1

uhðmiÞfiðx; yÞ

¼ uK0 þ
X3
i¼1

u
K0
h ðmiÞfiðx; yÞ. ð5:25Þ

The limited value LPhu
K0
h ðx; yÞ is obtained by first

computing the quantities

Di ¼ mðu
K0
h ðmiÞ;oDuK0ðmiÞÞ, (5.26)

where m is the total variation bounded (TVB) modified

minmod function of Eq. (5.18) and o41 is a weight
taken o ¼ 1:5.
Then

if
X3
i¼1

Di ¼ 0; LPhu
K0
h ¼ uK0 þ

X3
i¼1

Difiðx; yÞ,

if
X3
i¼1

Dia0 compute,

pos ¼
X3
i¼1

maxð0;DiÞ; neg ¼
X3
i¼1

maxð0;�DiÞ,

yþ ¼ min 1�
neg

pos

� �
; y� ¼ min 1;

pos

neg

� �
and obtain the limited value by

LPhuhðx; yÞ ¼ uK0 þ
X3
i¼1

bDifiðx; yÞ, (5.27)

wherebDi ¼ yþ maxð0;DiÞ � y� maxð0;�DiÞ. (5.28)

For systems of equations on triangular meshes,

limiting is performed on the local characteristic vari-

ables. For triangular meshes however the following flux

Jacobian

q
qu

f ðuK0 Þ
mic0
!!!
jmic0j

(5.29)

e.g. the flux Jacobian A � ~k along the direction of the unit

vector, k ¼
mic0
!!!
jmic0j

, must be diagonalized to evaluate the

left and right eigenvector matrices R�1 and R.

5.6.3. Component-wise limiters

The first way to apply a limiter to each characteristic

variable was presented in the previous sections for both

quadrilateral and triangular elements. The other way is

to apply a limiter to each of the conservative variables.

The characteristic-wise application of limiter for one-

dimensional linear hyperbolic systems has the nice

property of naturally degenerating to the scalar case.

In multiple dimensions, the characteristic variables must

be defined in a particular direction. For unstructured

meshes, there is no coordinate direction to define a

characteristic variable and these variables are defined in

the face normal direction. The design of characteristic-

based limiters in multiple directions is difficult and time

consuming.

In this section, the component-wise approach for the

limiter of the DG method is shown. This approach is

expected to be more efficient than the characteristic

approach of the previous sections. The component-wise

approach is based on the following numerical mono-

tonicity criterion for each element:

umini ouiðrrÞoumaxi , (5.30)

where umini and umaxi are the minimum and maximum

cell-averaged solutions among all its neighboring ele-

ments sharing a face with the triangle Ti and uiðrsÞ is the

solution at any of the quadrature points. Violation of

Eq. (5.30) for any quadrature point indicates that the

element is close to a discontinuity and the solution in the

element is forced locally linear, i.e.

uiðrÞ ¼ ui þruiðr� riÞ 8r 2 Ti, (5.31)

where ri is the position vector of the centroid of Ti. The

magnitude of the solution gradient is maximized subject

to the monotonicity condition given in Eq. (5.30). The

original DG polynomial basis is used to compute an
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initial guess for the gradient as

rui ¼
qui

qx
;
qui

qy

� �����
r2

. (5.32)

Using Eq. (5.31) and the gradient computed by

Eqs. (5.32), (5.30) may not still be satisfied. Therefore,

uiðrÞ is limited by multiplying by a scalar limiter f 2
½0; 1
 so that the solution vector obtained from

uiðrÞ ¼ ui þ fruiðr� riÞ (5.33)

satisfies Eq. (5.30). The scalar limiter f in Eq. (5.33) is
obtained by examining the numerical solutions at all

quadrature points as follows:

Denoting by

Dur ¼ piðrÞ � ui (5.34)

f ¼ 1

min 1;
Dur

umaxi � ui

� �
if Dur40;

min 1;
Dur

umini � ui

 !
if Duro0;
otherwise:

8>>>><>>>>:

5.7. DG stabilization operator

High-order accurate DG finite-element solutions

(with polynomial bases of degree one or higher) do not

guarantee monotonicity around discontinuities and

sharp gradients. The slope limiter of Cockburn et al.

[200] of the previous section guarantees monotone

solutions for multidimensional scalar conservation laws

and its extension to the Euler equations. This slope

limiter results in a robust numerical discretization and

has become quite popular. However, despite its robust-

ness the slope limiter of Cockburn et al. [200] has the

following serious disadvantages. It may result in an

unnecessary reduction in accuracy in smooth parts of

the flow field and slows down or prevents convergence to

steady state. Furthermore, its implementation for multi-

dimensional cases and high-order discretizations is very

intensive computationally.

Recently, van der Vegt and van der Ven [222]

suggested that a better alternative for stabilization of

the DG method is addition of artificial dissipation. This

approach was also followed in the past by Cockburn

and Grenaud [223] and Jaffre et al. [224]. The stabiliza-

tion operators make optimal use of the information

contained in a DG discretization and preserve the

compactness of the DG method because they use

the jump in the polynomial representation only at the

element faces.

The stabilization operator D 2 R4�4 of van der Vegt

and van der Ven [222] is for quadrilateral elements and is
defined as

Dlmðu
Kn

j

h ; un

h
Kn

j Þ ¼

Z
Kn

j

qcl

qxk

Dkpðu
Kn

j

h ; un

h
Kn

j Þ

�
qcm

qxp

dK , ð5:35Þ

where u
Kn

j

h is the expansion in the element Kn
j , uhðx; tÞ ¼PK

k¼1bukðK
n
j ÞckðxÞ and un

h

Kn
j is the solution in the element

which connect to the element Kn
j .

The stabilization operator must be applied in areas of

discontinuities and regions where the residual is large

due to insufficient grid resolution. This information is,

however, available in the DG discretizations, and are

coupled to the jump in the solution across element faces

and the element residual. In the regions of smooth

solution both the jumps and the residual are on the

order of the truncation error. Therefore, two artificial

viscosity approaches were presented by van der van der

Vegt and van der Ven [222], a subsonic and transonic

flow model, and a supersonic flow model. Full details of

these models are given in [222].

5.8. DG space discretization of the NS equations

The compressible Navier–Stokes (NS) equations can

be written in compact vector form as follows

qu
qt
þr � f iðuÞ þ rfvðu;ruÞ ¼ 0, (5.36)

where u is the vector of the conservative variables and f i,

fv denote the inviscid and viscous flux functions. The

viscous flux fv is a linear function of the gradient ru and

Eq. (5.36) can be also written as

qu
qt
þr � f iðuÞ þ r � ½AðuÞru
 ¼ 0. (5.37)

The discretization of the viscous, diffusive part of the

NS equations with the DG method is less well known

and different than the method described previously for

the convective, inviscid part.

A simple way to extend the scheme of Eq. (5.5), which

was developed for convective problems of the form

ut þ ux ¼ 0, for the diffusion equation ut þ uxx ¼ 0 is to

simply replace u by ux and find u 2 Vh such that

d

dt

Z
K

uðx; tÞfðxÞdx ¼

Z
K

uxfx dx� ðbuxÞjþ1=2f
�
jþ1=2

þ ðbuxÞj�1=2v
þ
j�1=2, ð5:38Þ

where for the lack of an upwind mechanism for the

diffusive term the numerical flux is the centered flux

ðbuxÞjþ1=2 ¼
1
2
½ðuxÞ

L
jþ1=2 þ ðuxÞ

R
jþ1=2
.

Unfortunately, this simple but naive formulation

leads to numerically stable but inconsistent solutions

[201,202]. The numerical solutions seem to converge

with mesh refinement but have Oð1Þ errors compared to
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exact solutions of the heat equation [202]. This is a

pitfall of the DG method when it is applied directly to

diffusion-type equations. The scheme of Eq. (5.38) is

therefore inconsistent because it produces stable but

completely incorrect solutions.

A formulation of the DG method that is convergent

and consistent was used by Bassi and Rebay [203] for the

compressible Navier–Stokes equations. A second suc-

cessful method that avoids the inconsistencies of the

simple formulation of Eq. (5.38) was presented by

Baumann and Oden [204] who added extra penalty

terms to the inner boundaries.

The consistent formulation of Bassi and Rebay [203]

for the spatial discretization of the viscous term in the

NS equations was constructed by resorting to a mixed

finite-element formulation. The second-order derivatives

of the conservative variables required for the viscous

terms were obtained by using the gradient of the

conservative variables, ru ¼ SðuÞ, as auxiliary un-

knowns of the NS equations. The NS equations were

therefore reformulated as the following coupled system

to the unknowns S and u.

S�ru ¼ 0,

qtuþ r � f iðuÞ þ r � f vðu;SÞ ¼ 0. ð5:39Þ

The weak formulation of the first equation of the

system of Eq. (5.39) isZ
K

Shfdx�

I
e

uhnfdGþ
Z

K

uhrfdx ¼ 0, (5.40)

where the term uhn in the second (contour) integral of

Eq. (5.40) is replaced by a numerical flux Hsðu
�; uþ; nÞ.

This numerical flux is a centered flux given as the

average between the two interface states

Hsðu
�; uþ; nÞ ¼ 1

2
ðu� þ uþÞn. (5.41)

The computed auxiliary variables Sh are used to form

the second equation of the system in Eq. (5.39) as

follows

d

dt

Z
K

uhfdxþ

I
e

f iðuhÞ � nfdG

�

Z
K

f iðuhÞrfdxþ

I
e

fvðuh;ShÞ � ndG

�

Z
K

fvðuh;ShÞrfdx. ð5:42Þ

In Eq. (5.42), the term fvðuh;ShÞ � n is replaced with the

following centered numerical flux

hvðu
�;S�; uþ;Sþ; nÞ

¼ 1
2
½fvðu

�;S�Þ þ fvðu
þ;SþÞ
 � n.

A more detailed presentation and analysis of the DG

discretization of the viscous part was recently presented

by Bassi et al. [221]. In Ref. [221], the main points of the

DG discretizations of second-order derivatives were
described using a simple purely elliptic problem the

Helmholtz equation with Dirichlet and Neumann

boundary conditions. The extension to the full NS

equations was carried out first. Next, an alternative

scheme for ‘‘compact’’ DG approximation of elliptic

problems was proposed [221]. This alternative scheme

overcomes limitations of the method associated with not

optimal accuracy for approximations with odd order

polynomials and the additional computing cost occur-

ring form the introduction of the auxiliary variable S,

The auxiliary variable S is obtained in terms of uh at the

cost of a block diagonal mass matrix inversion from the

first equation. However, the formulation of the second

equation, which is obtained in this manner, and contains

the primal variable alone involves an ‘‘enlarged stencil’’.

This enlarged stencil occurs because the primal un-

known uh for any internal element e is coupled not only

with unknowns of the neighboring elements but also

with unknowns associated to the neighbors of the

neighbors (because the second derivative is evaluated

as the first derivative of a first derivative). The enlarged

stencil implies additional computing cost. Bassi et al.

[221] showed that only the jump contribution to the

auxiliary variable S is responsible for the non-compact

support of the scheme described and they propose

modifications that one can use to arrive at a scheme

with compact support for elliptic problems and for

DG discretizations of the viscous terms in the NS

equations.

The modification of the new scheme for the discreti-

zation of the elliptic operators follows more closely the

numerical flux function ideas usually employed in

finite-volume (FV) schemes. A typical treatment of an

elliptic operator in FV schemes is often based on the

definition of auxiliary staggered control volumes enclos-

ing the boundaries of the primal control volumes that

are used to construct the diffusive terms, which are

the analogue to the vector flux S used in the DG

formulation.

5.9. The DG variational multiscale (VMS) method

The VMS method is a new approach for LES

proposed by Hughes et al. in a series of papers

[225–227]. The VMS method was subsequently further

clarified by Collis [228] and applied with the DG method

[229,230] for LES of compressible turbulence. More

recently the VMS method was further developed [231]

for mixed-type, Fourier-spectral/finite-volume formula-

tion. The ideas behind the VMS method and its

implementation with the DG space discretization

method are briefly described.

The dynamics of turbulent shear flows are dominated

by the motions of a small number of relatively large-

scale structures. The separation between the large,

energy containing scales and the smallest turbulent
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scales increases as the Reynolds number increases. The

increase in range of scales prevents DNS from being a

viable tool beyond very simple, low Reynolds number

flows. In contrast, LES attempts to exploit the scale

separation in turbulent shear flows by representing the

largest scales as accurately as possible on the computa-

tional mesh and using a model to account for the

influence of the unresolved smaller scales. Important

progress in turbulent flow simulations with LES was

made, primarily with the application of the so-called

dynamic model (see [4–6,233]). It was, however, soon

recognized that the Reynolds numbers for which LES

can be applied using this approach are still far too low.

As a result, LES is not still an economically feasible

alternative for the simulation of the vast majority of

engineering flows. The deficiencies of RANS or even

DES to accurately predict complex separated flows and

the high computing cost of LES for flows of practical

interest lead to the quest of new approaches [225,232].

These approaches overcome the weaknesses of LES and

RANS while providing consistency with DNS. The

Discontinuous Galerkin/Variational Multi-Scale (DG/

VMS) method [229] which merges VMS turbulence

modeling [225] with the high-order accurate DG

discretization is a particular synergistic combination

that offers a number of advantages over traditional

methods.

The advantages of the VMS/DG approach for LES

are:
(1)
 Variational projection with a priori scale separation

[225] avoids problems associated with spatial filters.
(2)
 The method converges to the exact DNS.
(3)
 The method is high-order with the potential for

exponential (spectral) convergence.
(4)
 VMS/DG is insensitive to grid quality and suitable

for complex domains.
~

(5)
=U U U
~ +
The method allows for different models to be used in

different regions of the flow while still retains formal

convergence to the exact solution.
(6)
 The VMS/DG approach for turbulence simulations

unifies traditional DNS, LES and RANS ap-

proaches in a single computational tool.
k
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Fig. 92. Wave space decomposition for the VMS method.
The VMS/DG method is briefly described next.

Consider the compressible Navier–Stokes equations

in strong conservation law form

NðUÞ ¼ Ut þ F i
j;j � Fv

j;j ¼ 0,

Uðx; 0Þ ¼ U0ðxÞ, ð5:43Þ

where U ¼ ½r; ru; rE
T is the conservative variable

vector F i
jðUÞ is the inviscid flux vector in the j coordinate

direction, and Fv
j ðUÞ is viscous flux vector in the j

coordinate direction.
The weak form of Eq. (5.43) isZ
Oe

WTUt dxþ

Z
Oe

WT
j ðF

u
j � Fi

jÞdx

þ

I
qOe

WTðFine
� Fvne

ÞdS ¼ 0, ð5:44Þ

where Fn ¼ Fjnj , ne is the outward unit normal vector

on qOe, and W is a continuous weighting function in the

element Oe.

Following the VMS approach of [228] the following

three-level multiscale framework is used to allow direct

monitoring of unresolved scales.

U ¼ U þ eU þ bU . (5.45)

In the partition of Eq. (5.45), of the exact solution U, U

represent the large scales, eU are the small scales, and bU
are the unresolved scales. This partition into scales is

depicted in Fig. 92 as a range of Fourier modes in

wavespace. The large scale equations have no modeling

terms while the small scale equations have modeling

terms that can range from Smagorinsky closure to a full

Reynolds stress model. The large and small scales are

referred to as resolved scales.

Assuming that the basis is orthogonal and substitut-

ing the partition of Eq. (5.45) in the weak form of

Eq. (5.44), which in condensed form is BðW;UÞ ¼ 0,
obtain for the large-scale equations

BðW ;UÞ � CðW ;U ; eUÞ � RðW ; eUÞ
¼ CðW ;U ; bUÞ þ RðW ; bUÞ þ CðW ; eU ; eUÞ ð5:46Þ

and for the small-scale equations obtain

B0ð eW ;U ; eUÞ � Rð eW ; eUÞ
¼ Rð eW ;UÞ þ Cð eW ;U ; bUÞ þ Rð eW ; bUÞ þ Cð eW ; eU ; bUÞ.

ð5:47Þ
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The analysis for the general nonorthogonal basis can

be found in [228].

In Eqs. (5.46) and (5.47) RðW ; eUÞ is the generalized
Reynolds stress, CðW ; eU ; bUÞ is the generalized cross-
stress, B0ðW ;U ; eUÞ is the operator BðW ;UÞ linearized
about U for the linear perturbation eU .
The effect of the unresolved scales on the large scales

is seen in Eq. (5.46) which contains the unresolved

Reynolds stress projection onto the large scales simulta-

neously with the large- and small-unresolved generalized

cross-stresses projections onto the large scales. The

small-scale equation also contains the unresolved

Reynolds stresses and cross-stresses. For truncated or

discrete approximations, the combined small and large

scales are identified as the resolved scales (see Fig. 92)

and denoted as eU ¼ U þ eU . Therefore, the resolved
scale equation (Eq. (5.46)) is written more compactly as

BðfW ; eUÞ ¼ RðfW ; bUÞ þ CðfW ; eU ; bUÞ. (5.48)

The equations for small- (Eq. (5.47)) and large-scales

(Eq. (5.46) or (5.48)) indicate the need to model unresol-

ved Reynolds and cross-terms appearing on the right-

hand side. The modeling assumptions introduced are:
(1)
 The unresolved scales bU have negligible direct

influence on the dynamic evolution of the large

scales U . Therefore, for sufficient a priori scale

separation, the right-hand side of Eq. (5.46) is small,

e.g. CðW ;U ; bUÞ þ RðW ; bUÞ þ CðW ; eU ; bUÞ � 0.

(2)
 The unresolved scales bU , however, are expected to

significantly influence the small scales eU . As a result,
an appropriate model is needed for the right-hand side

terms of Eq. (5.47). Therefore we set Cð eW ;U ; bUÞþ
Rð eW ; bUÞ þ Cð eW ; eU ; bUÞ ¼ Mð eW ;Uh; eUhÞ.
The VMS formulation can support a wide range of

models. In addition, a key feature of the VMS method is

that different models can be used in different spatial

locations. As a result, the model used depends on the

particular flow characteristics, the desired fidelity,

and the location of the particular subdomain under

consideration.

Using modeling assumptions (1) and (2) the equations

for the large and small scales become:

BðW ;UhÞ � CðW ;U ; eUÞ � RðW ; eUÞ
¼ RðW ; eUhÞ, ð5:49Þ

B0ð eW ;Uh; eUhÞ � Rð eW ; eUhÞ

¼ Rð eW ;UÞ þMð eW ;Uh; eUhÞ, ð5:50Þ

where the subscript h in Eqs. (5.49) and (5.50) is

introduced to denote that these equations contain

modeling errors and that the approximate numerical

solution introduces discretization errors.
The large-scale equation is an approximation because

the effect of the unresolved scales has been ignored. The

modeled large-scale equation takes the form of the exact

equation only when all scales of motion are contained

within the resolved scales. In this case, the VMS method

is a DNS. However, by neglecting the influence of the

unresolved scales on the large scales, the modeled large-

scale equation has no direct modeling terms. The model

in the small scales indirectly influences the large scales.

This is achieved through the small-scale Reynolds and

cross-stresses. Thus, if the exact solution is fully

represented by the large scales, then the solution to the

modeled equations (5.49) is exact. This consistency is an

important advantage over classical methods [225]. The

model applied to the large-scale equation is nothing

more than the standard approach used in a Galerkin

method where the projection of the residual of the

unresolved scales onto the large scales is zero. Con-

sidering the simplified case where the bases are

orthogonal, this amounts to weak enforcement of zero

unresolved Reynolds/cross-stresses on the large scales.

This indicates the particular discretizations play a role in

altering the model and therefore the results.

In the small-scale equation, it is the projection of the

unresolved Reynolds and cross-stresses onto the small

scales that is modeled using a weak implementation of a

subgrid-scale model. Again, use of different methods for

the small-scale discretizations is expected to alter the

model. This is an advantage of the VMS framework.

Although the model is specified without regard to the

specific discretization, the influence of discretization is

obvious in the modeled equations. This fact has not been

completely appreciated in the traditional turbulence

modeling community until recently when it was realized

that differences between the discretization with the

‘‘same model’’ might be as large or larger than

differences in ‘‘models’’ using the same discretization.

In the VMS framework, the influence of different

discretizations is evident and the choice of discretization

clearly plays an important role in the success of

particular models. Therefore an important area for

future research is to explore different bases for use in

defining large and small scales. The modeled large and

small scales in Eqs. (5.49) and (5.50) are combined as

follows:

BðfW ; eUhÞ ¼ Mð eW ;Uh; eUhÞ þ ð
fW ;SÞ on Oe. (5.51)

The model of Eq. (5.51) can be implemented with VMS

by incorporating the additional model term into the

small-scale equations. This model term can depend on

both the large and small scales. Therefore it can take

forms ranging from classical Smagorinsky model to

models used in DES.

In the proceeding paragraphs, the variational multi-

scale method was presented for a typical subdomain Oe.
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Summing Eq. (5.51) over all the subdomains in the

partition Ph of O and introducing typical continuous

smooth finite-dimensional spaces for Uh and the test

function Wh then, subject to appropriate boundary

conditions and the particular choice of model, obtain the

standard variational multiscale method for classical

finite elements, spectral elements, or global spectral

methods (see e.g., Refs. [225,227–234]). Results from

these methods are quite new, they have shown tremen-

dous potential including the ability to accurately

simulate wall-bounded and non-equilibrium turbulence

using a very simple constant coefficient Smagorinsky

model on the small scales [227]. However, most of the

results presented to date use global spectral methods,

which have a rich function space but are only feasible for

very simple geometries [226,227]. The preliminary work

of Jansen [234] and co-workers offsets this by using a

low-order (cubic and lower) hierarchical basis within a

C� finite-element method. While this method can be

applied to complex geometries, the relatively low-order

function spaces may not have a sufficient scale separa-

tion for effective turbulence simulation. Perhaps of even

greater importance however, is that the reliance of prior

approaches on C� or smoother function spaces limits

ones ability to alter the large/small partition or change

the form of the model as a function of space. For

example, in laminar regions of a flow no model should

be used, while in boundary layers a RANS type model

may be appropriate (if you only are concerned with the

mean flow) while in a wake region an LES type model

may be used to capture the large-scale unsteadiness.

To address these limitations, the DG/VMS method

introduced in [229] combines VMS turbulence modeling

with a DG method in space. The combination of

these two methods is particularly synergistic and the

combined DG/VMS method possesses the following

characteristics:
�
 high-order (even exponential) convergence on highly

irregular unstructured meshes;
�
 discretization, large/small partitioning, and model

equations can be changed on each subdomain, Oe;
�
 all boundary conditions are set weakly through

boundary fluxes including fluxes of turbulence stress.

This enables one to directly enforce zero turbulent

stress at solid walls—a feature not present in prior

approaches;
�
 the method is highly localized leading to a great

degree of parallelism which is required for the large-

scale turbulence simulations we are targeting.
The additional complication with the VMS/DG

method is that the typical approach for diffusive

problems has been to introduce auxiliary variables for

the viscous fluxes and re-write the equations of motion
as an extended first-order system of equations [206].

This mixed approach has been demonstrated by Lomtev

et al. [235] for two- and three-dimensional unsteady

flows. Unfortunately, the mixed approach in three-

dimensions requires 6 additional unknowns and equa-

tions for three-dimensional Navier–Stokes flows.

Furthermore, in applications, the model terms,

Mð eW;U; eUÞ, often take the form of diffusive terms

(eddy diffusivity models) that may require the addition

of even more unknowns. Over the past few years, there

has been extensive research on the use of DG methods

for elliptic and mixed hyperbolic/elliptic problems (see

e.g. [203,204,206,236]). Furthermore, Arnold et al. [237]

showed that the flux formulation, commonly used in

DG methods, can be readily converted to the primal

formulation.

With this background, the variational multiscale

method described above can be merged with a DG

method. Denoting the boundary of the domain O as

qO ¼ GD [ GN where GD is the portion of the boundary
where Dirichlet conditions are specified and GN is the

portion of the boundary where Neumann conditions are

set. The element boundary is denoted as G ¼
fGD;GN;G0g where G0 are the inter-element boundaries.
Let O1 and O2 be two adjacent elements. Furthermore,
let G12 ¼ qO1 \ qO2; and nð1Þ and nð2Þ be the correspond-

ing outward unit normal vectors at that point. Denoting

UðeÞ and F
ðeÞ
i be the state vector U and flux vectors Fi,

respectively, on G12. Then, define the average h:i and
jump ½:
 operators on G12 as

ðaÞ ½Uni
 ¼ Uð1Þn
ð1Þ
i þUð2Þn

ð2Þ
i ,

ðbÞ ½Fn
 ¼ F
ð1Þ
i n

ð1Þ
i þ F

ð2Þ
i n

ð2Þ
i ,

ðcÞ hUi ¼ 1
2
ðUð1Þ þUð2ÞÞ,

ðdÞ hFii ¼
1
2
ðF
ð1Þ
i þ F

ð2Þ
i Þ, ð5:52Þ

where Fn ¼ Fini.

With this notation and Eq. (5.51) the discontinuous

Galerkin formulation of the BðW;UÞ term, defined in
Eq. (5.46), is applied to obtain the DG formulation for

the Navier–Stokes equations as

BDGðW;UÞ ¼
X
Oe

Z
Oe

ðWTU;t þWT;iðF
v
i � FiÞÞdx

�

Z
G
ð½WTni
hbFvi � bFii

� hðDiWÞ
T
i½ðbU� bUÞni
Þds

�

Z
G0

ðhWTi½bFvn � bFn


� ½ðDnWÞ
T

hðbU�UÞniiÞds, ð5:53Þ

where FnðUÞ ¼ FiðUÞni; and FvnðUÞ ¼ Fvi ðUÞni ¼ DnU:
Quantities with a hat in Eq. (5.53) are numerical

fluxes that must be appropriately defined. For example,

the term FiðU
�;UþÞ is an appropriate approximate
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Riemann flux (see previous sections for various options).

The particular choice of Riemann flux plays an

important role in determining the dispersion/dissipation

characteristics of the method [210]. For example, using

the Steger–Warming flux-vector splitting where FnðUÞ is

split into inflow and outflow components F�n and Fþn as

follows:

Fn ðUÞ ¼ RlLU; K ¼ 1
2
ðK jKjÞ (5.54)

and the approximate Riemann flux in this case is simplybFnðU
�;UþÞ ¼ Fþn ðU

�Þ þ F�n ðU
þÞ where U ¼ lim�!0

þUðx �nÞ. Similarly, various options are available

for the numerical viscous fluxes [237] and a particularly

simple approach is the interior penalty method bU ¼
hUi; bFv ¼ hFvi i � m½Uni
 where m40 is a stabilization

parameter [238,239]. Thus, the DG method is:

Given U0 ¼ U0ðxÞ, for t 2 ð0;TÞ, find Uðx; tÞ 2
VðPhÞ �H1ð0;TÞ such that Uðx; 0Þ ¼ U0ðxÞ and

BDGðW;UÞ ¼ MDGð eW;U; eUÞ þ ðW;SÞ, (5.55)

8W 2 VðPhÞ where VðPhÞ is the broken space defined in

[204]. If VðPhÞ is restricted to a space of continuous

functions, then one recovers the classical Galerkin

approximation. Further details about turbulence mod-

eling with the VMS approach and additional implemen-

tation issues can be found in the original references

[225–229].

5.10. Implicit time marching of DG discretizations

An implicit time marching algorithm based on the

backward Euler integration scheme was presented in

[240] for DG discretizations. This algorithm is uncondi-

tionally stable in two dimensions and provides time

accuracy only when its time step resolves the temporal

scales of the problem. The advantage of the uncondi-

tional stability is lost in the case of DNS of transitional

and turbulent flows where the time scales that need to

be resolved are often comparable to the time step

imposed by explicit schemes. Unconditional stability is

exploited to obtain steady-state solutions with the DG

discretization.

Application of backward Euler time integration to the

weak form of the Euler or Navier–Stokes equations with

the DG discretizations yieldsZ
Oi

qUn
i

qt
vi

l dO�
Z
Oi

FðUn
i þ DUn

i Þ � rvi
l dO

þ
X

j

I
qOij

FnumðU
n
i þ DUn

i ;U
n
j þ DUn

j ; nÞV
i
l dS ¼ 0,

l ¼ 1; . . . ;N, ð5:56Þ

where the superscript for the state variable indicates the

time level and

DUn
i ¼ Unþ1

i �Un
i . (5.57)
Performing linearization of the fluxes F and Fnum
obtain

FðUi þ DUiÞ ¼ FðUiÞ þ AðUiÞDUi þ qðDt2Þ

FnumðUi þ DUi;Uj þ DUj ; nÞ

¼ FnumðUi;Uj ; nÞ þ A1
ijDUi þ A2

ijDUj þ qðDt2Þ, ð5:58Þ

where

AðUÞ ¼
qF ðUÞ

qU
;

A1 ¼
qFnumðu;v;nÞ

qu
; A2 ¼

qFnumðu;v;nÞ
qv

;

A1
ij ¼ A1ðui; vj ; nÞ; A2

ij ¼ A2ðui; uj ; nÞ

with these definitions dropping terms of higher than

second order in Eq. (5.56) obtainZ
Oi

qU
n

i

qt
Vi

l dO�
Z
Oi

AðU
n

i ÞDU
n

i � rV
i

l dO

þ
X

j

Z
qOi

ðA1
ijDU

n

i þ A2
ijDUjÞV

i

l dS

¼ Ri;lðU
n
Þ, ð5:59Þ

Ri;lðU
nÞ ¼

Z
Oi

F ðun
i Þ � rVi

l dO

�
X

j

I
qOij

Fnumðu
n
i ; u

n
j ; nÞV

2

l dS. ð5:60Þ

Let bU ¼ ðbU1; . . . ;
bUNe Þ be the expansion coefficient of

the approximate solution where bUi ¼ ð
bUi;1; . . . ;

bUi;N Þ.

UiðxÞ ¼
XN

l¼0

bUi;lV
i

lðxÞ; i ¼ 1; . . . ;Ne. (5.61)

The implicit scheme of Eq. (5.59) is written in matrix

form as

MðUnÞD bUn
¼ RðUnÞ,

MðU
n
Þ ¼

D

Dt
�

qRðU
n
Þ

qbU , ð5:62Þ

where D denotes the block diagonal mass matrix

D ¼ diagðd1; . . . ; dNe Þ.

½di
kl ¼

Z
Vi

kV
i
l dO. (5.63)

The spatial accuracy of the solution depends on the

discretization of the residual as for the implicit schemes

presented in Section 2 in the finite difference context.

Quadratic convergence and large-time steps are possible

only when the spatial discretization of the left-hand

side of Eq. (5.62) is consistent with the discretization of

the right-hand side. The linear system of Eq. (5.62)

can be solved with the generalized minimum residual

(GMRES) Krylov method [241] with single- or two-level

preconditioning.
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Fig. 93. Solution computed with an unstructured, triangular

mesh and third-order polynomial basis.
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A second-order accurate in time implicit Runge–Kut-

ta method can also be used for time integration of DG

discretizations [221] as follows:

Considering the system of the DG discretization

D
du

dt
� RðuÞ ¼ 0, (5.64)

where D is the mass matrix the second order implicit

Runge–Kutta method involves two backward Euler

steps and can be written as

unþ1
j ¼ un

i þ g1K1 þ g2K2, (5.65)

D

Dt
þ a

qRðunÞ

qu

� �
; K1 þ RðunÞ ¼ 0, (5.66)

D

Dt
þ a

qRðunÞ

qu

� �
; K2 þ Rðun þ bK1Þ ¼ 0 (5.67)

the constants a;b; g1 and g2 corresponding to an optimal
second-order accurate scheme [242] are a ¼ ð2�

ffiffiffi
2
p
Þ=2,

b ¼ 8að0:5� aÞ, g1 ¼ 1� 1=8a, g2 ¼ 1� g1.
The backward Euler scheme of Eq. (5.61) is recovered

by g1 ¼ 1, g2 ¼ 0 and a1 ¼ 1. The Crank-Nicolson

algorithm is obtained for g1 ¼ 1, g2 ¼ 0, a ¼
1
2
.

5.11. p-type multigrid for DG

A p-type multigrid acceleration method was devel-

oped [207] for convergence acceleration with the G

method. A simple backward Euler discretization in time

was used [207] so that the discrete equation for time

advancement is

M
1

Dt
ðunþ1 � unÞ þ Rðunþ1Þ ¼ 0, (5.68)

whereM is the mass matrix, R is the residual vector, and

u are the degrees of freedom to be evolved in time from

time level n to nþ 1.

For steady-state solutions the nonlinear system

RðUÞ ¼ 0 is solved using a p-multigrid scheme with a

linear Jacobi smoother. A generic iterative scheme for

Eq. (5.68) can be written as

unþ1 ¼ un � P�1RðunÞ, (5.69)

where the preconditioner, P, is an approximation to

qR=qU . In p-multigrid the low-frequency error modes

can be effectively corrected by smoothing with lower

order expansion of the approximate solution that serve

as the worse grids [243]. p-multigrid fits naturally with

the frame work of high-order DG discretizations. There

is no need to store additional grid information since the

same spatial grid is used by all levels. The transfer

operators between the different p expansions, prolonga-

tion and restriction, are local and are stored for the

reference element.
5.12. Results with the DG method

Second- fourth- and sixth-order accurate numerical

solutions for wave propagation on triangular meshes

were computed in [244] using polynomial base functions

P1, P3, and P5, respectively. The accuracy of the

numerical solutions was evaluated by comparing the

computed results with exact solutions. The first test

problem with an exact solution [245] was propagation

and reflection from a solid wall of a Gaussian pressure

pulse given by pðx; yÞ ¼ expf� ln 2½x2 � ðy� y0Þ
2

=Wg,

where W is the width of the pulse and y0 is the

distance from the wall. The second problem with

an exact solution is scattering of a similar

Gaussian pressure pulse from the surface of a cylinder

[246].

The solutions of the linearized Euler equations [244]

were computed with third-order polynomial basis on a

relatively coarse, fully unstructured mesh. The computa-

tional mesh is shown in Fig. 93. At the far-field

boundaries, the radiation boundary condition [86] was

used. It can be seen that the pressure waves exit the

computational domain undistorted and there are no

reflections in the interior from the computational

boundaries. Acoustic disturbance propagation is iso-

tropic and does not require use of meshes with pattern

[210]. It appears that the unstructured mesh of Fig. 93 is

more appropriate for acoustic wave propagation. For

convenience, evaluation of the numerical method is

performed with solutions computed on meshes obtained

from triangulation of structured Cartesian-type grids.

The elements of the mesh for the solution of Fig. 94

follow a uniform triangular-mesh generating pattern. It

was shown in [210] that the accuracy of the computed

solution depends on the triangular-mesh generating

pattern. Comparing the computed solutions of Figs. 93

and 94 it appears that the coarse, canonical grid solution

ðDx ¼ 2Þ obtained with the third order P3 polynomial

basis shows more distortion than the fully unstructured
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Fig. 94. Comparison of the pressure field computed with Dx ¼ 2 triangular elements and third-order polynomial basis (right) with the

exact solution (left).
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Fig. 95. Comparison of the pressure computed with P1, P3, and

P5 polynomial bases with the exact solution; in all cases the

same canonical triangular mesh with Dx ¼ 2:0 is used.
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mesh of Fig. 93 that has comparable resolution. The

upper part of Fig. 94 shows, however, that for fine

grids and high-order accuracy the bias introduced

by the triangular-mesh generating pattern is very

small. This is again consistent with the theoretical

analysis of [210].

Solutions shown in the following paragraphs were

computed [244] until final time T ¼ 25 on triangular

canonical meshes with mesh generating pattern (see

Fig. 95). Comparisons are carried out with the exact

solution given in [245]. A comparison of the solutions

computed with grid spacing Dx ¼ 2:0 is only shown in
Fig. 95 because within plotting accuracy for Dx ¼ 1:0
the differences between the fourth- and sixth order-

accurate solutions are not visible. The same time step

Dt ¼ 0:01, which is below the stability limit of the

Runge–Kutta method was used for all solutions. The

comparison with the exact result of Ref. [245] is shown

along the symmetry line, which is normal to the wall at

x ¼ 0. For the same location, the error er ¼ ðpcom � pexÞ

of the computed solutions is shown in Fig. 96.

Clearly, only for Dxo1:0 the results computed with

the first-order polynomial basis (second-order accurate

solution) provide the accuracy level needed in aero-

acoustic computations.
In Fig. 97, the grid convergence of the second-,

fourth-, and sixth-order accurate solutions is shown.

The error norm in Fig. 97 was computed on the

symmetry line, where the error norm is expected to be
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Fig. 97. Grid convergence (in the L2 norm of the computed

pressure) of the second- (P1), the fourth- (P3), and sixth-order

(P5) accurate solutions computed with triangular elements.
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the largest, and not for the entire domain. Norms of the

error computed in the full domain do not differ much

from the error norm obtained from the deviation of the

computed solution from the exact result only on the

symmetry line. The grid convergence plot of Fig. 97

shows that all solutions achieve the expected order of

accuracy. Once again it is evident that the desired order

of accuracy for CAA can only be achieved with higher-
order methods. Furthermore, it was found that for this

simple problem the solution computed with fourth- or

sixth-order accuracy and single precision practically

converges when Dx ’ 1:0 and the remaining errors

are mainly due to time integration. In Fig. 98, the

reduction of the average error is plotted versus the

required computing time for the solution. It can be seen

that use of higher-order accuracy yields savings in
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computing time when the solution must reach certain

error level.

Solutions computed with quadrilateral meshes are

presented next. A comparison of the pressure field

computed with third-order polynomial basis with the

exact result is shown in Fig. 99. It was found [244] that

the solutions computed with quadrilateral elements do

not achieve the ðk þ 1Þth order of accuracy. This is

expected because in a computation with third-order
Fig. 101. Comparison of the computed pressure at r ¼ 5:0 and 0pTp
pulse scattering.

Fig. 100. Comparison of the computed pressure field obtained

with P3 quadrilateral elements with the exact solution for

scattering from a cylinder surface.
basis, for example, the unit area (for Dx ¼ dy ¼ 1) is

spanned by 16 polynomials in quadrilateral elements

while for triangular element discretization the same area

is covered by two elements and spanned by twenty

(2� P3j¼1;...;10 ¼ 20) polynomials. In terms of computing

efficiency, the solution obtained with quadrilateral

elements requires slightly less computing time.
8 for f ¼ 0�, and f ¼ 90� with the exact solution of Ref. [33] for

Fig. 102. Computed pressure field with triangular mesh and P5

polynomial basis for scattering of a pressure pulse from the

surfaces of two cylinders.
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Fig. 103. Multigrid levels in an adapted mesh about the NACA

0012 airfoil.

J.A. Ekaterinaris / Progress in Aerospace Sciences 41 (2005) 192–300274
Solutions for more complex domains were also

computed. First, scattering of sound waves from the

surface of a cylinder, which is one of the benchmark

problems of [246], is considered. The computed solution

with third-order polynomial basis and quadrilateral

elements at T ¼ 8 is compared qualitatively with the

exact result in Fig. 100. Very good agreement with exact

result is achieved for the solutions computed with both

triangular and quadrilateral elements. The computa-

tional domain for the solution obtained with triangular

elements contains 5437 elements or 2810 vertices.

Discretization of the same domain with isoparametric

quadrilaterals includes 2000 elements or 2091 vertices. In

both cases the cylinder was represented by 40 elements.

The time variation of the computed solution for

0pTp8 is shown in Fig. 101. Again good agreement
with the exact result [246] is achieved.

Next, scattering of a Gaussian pulse from the surfaces

of two cylinders with different diameters is considered.

The large cylinder has diameter D1 ¼ 2 and the small

cylinder has diameter D2 ¼ 1. The distance between the

centers is 8:5D2, the large cylinder center is at ð�5; 0Þ,
the small cylinder center is at ð3:5; 0Þ and the source is
located at ð0; 0Þ. The solution is computed using

triangular elements because the meshing of the domain

with triangular elements is easier and the resulting mesh

is more isotropic. The surface of the large cylinder is

represented by 40 elements and the surface of the small

cylinder is represented by 20 elements. The entire

domain contains 7671 elements or 3929 vertices and

the solution is obtained with the p5 polynomial basis.

The computed pressure field at time T ¼ 10 is shown in

Fig. 102.

Numerical solutions obtained with the DG finite-

element method for benchmark aeroacoustic problems

demonstrated that only p3 (fourth-order) or higher-

order accurate discretizations provide the required

resolution for CAA. In terms of computing time,

solutions with equivalent order of accuracy obtained

on triangular meshes require about 10% more resources

than the solutions obtained with quadrilateral meshes.

In both cases, the CFL stability limitations become more

stringent, cf. [208] with the increase of the order of

spatial accuracy. For isotropic meshes, the resolving

ability of both triangular and quadrilateral space

discretizations is approximately equivalent. For two-

dimensional problems, it is feasible to achieve spatial

accuracy up to sixth order. Sixth- or higher-order of

accuracy is possibly advantageous for long time

propagation of complex waveforms. Numerical tests

for pure convection ðut þ ux ¼ 0Þ of complex one-

dimensional waves of the form uðx; tÞ ¼ 0 ¼
½2þ cosðaxÞ
 exp½� ln 2ðx=10Þ2
, a ¼ 1:7, using up to

10th-order accurate DG discretizations showed that

for long time integration ðT4400Þ at least sixth-order
accuracy is needed. Application of the DG finite-element
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Fig. 104. Adapted mesh around an oscillating NACA0012 airfoil, contours of density and surface pressure coefficient Cp for a ¼ 3:77�

(pitching upward) and a ¼ 4:0� (pitching downward); M ¼ 0:8, o ¼ p=10.
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method for three-dimensional CAA applications is

straightforward using the available finite-element frame-

work [42] but beyond the scope of the present paper. It

appears, however, that three-dimensional CAA applica-

tions with the DG method are feasible in terms of the

required computing resources but discretizations with

polynomial bases of order higher than three are possibly

too intensive computationally.

Computations of compressible flows over realistic

aerodynamic configurations with the DG method were

carried out by Van der Vegt and Van der Ven [247] and

more recently in [222]. Examples of the recent computa-

tions of transonic steady and unsteady airfoil flows of

[222] using the space–time DG method and stabilization

operators of Section 5.10 instead of slope limiters are
shown in Figs. 103 and 104. Very good resolution of

transonic shocks was obtained with the stabilization

operators. Adaptive grid refinement with ‘‘hanging

nodes’’ that is possible for DG method yielded very

good resolution of the shocks.

Computations of viscous turbulent flows with the DG

method were recently presented by Bassi et al. [221].

Examples from these computations are shown in

Figs. 105–107. Fig. 105 shows the computational mesh

over turbomachinery blades. An implicit Runge–Kutta

method was used for time marching in order to avoid the

stringent stability limitations imposed by the small grid

spacing required for the resolution of the near wall

viscous phenomena. The unsteady flow field is shown

with snapshots in Figs. 106 and 107. Additional results
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Fig. 105. Global view and detail of the grid around the blade.

Fig. 106. Snapshot of Mach number and turbulence intensity

computed with P2 elements.
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with the DG method can be found in other recent

publications [248–256].
6. The spectral volume (SV) method

The discontinuous Galerkin method of Section 5 is

based on the finite-element framework and assumes a

high-order data distribution for each element. As a

result, the computed state variables are not continuous

across the element boundaries and a Riemann solver is

required to compute the fluxes through the element

boundaries. The DG method is fully conservative and

does not depend on grid smoothness. It was mentioned,

however, in Section 5 that the main disadvantages of the

DG method are the high computing cost and the

deterioration of the CFL stability with the increase of

the order of approximation. The high computing cost
for high-order solutions occurs because of the large

number of the polynomial coefficients that need to be

determined and the evaluation of high-order surface and

volume integrals that are expensive to compute. A kth

order DG method (k � 1 polynomial basis) requires

2kth accurate quadratures for the line or surface

integrals and ð2k � 1Þth order accurate quadrature

formula for the volume integrals.

The spectral volume (SV) method is a new conserva-

tive high-order accurate numerical method developed by

Wang in a series of papers [46,257,258]. The SV method

is a finite-volume method for unstructured grids that

unlike other FV methods does not require information

from neighboring cells to perform reconstruction. The

SV method like other FV methods and the DG method
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Fig. 107. Shedding from the blade trailing edge shown with density contours.
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is suitable for discontinuity capturing with the applica-

tion of TVD or TVB limiters.

6.1. Fundamentals of the SV method

The basic idea of the spectral volume method [46] is

presented for the following multidimensional conserva-

tion law for the scalar uðx; y; tÞ

qu

qt
þ

qf ðuÞ

qx
þ

qf ðuÞ

qy
¼ 0 (6.1)

in the domain O with flux F ¼ ðf ; gÞ, initial condition
uðx; y; 0Þ ¼ u0ðx; yÞ, and appropriate boundary condi-

tions.
The domain O is discretized into N nonoverlapping

cells Si called spectral volumes, which are the same as

the usual finite volumes. The integral form of the scalar

conservation law isZ
Si

qu

qt
dV þ

I
qSi

ðF � nÞdA ¼ 0, (6.2)

where n is the outward unit normal on qSi. The cell-

averaged state variable for the spectral volume Si is

defined in the usual way as

ui ¼
1

Vi

Z
Si

udV , (6.3)

where Vi is the area or volume of the spectral volume Si.
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Fig. 108. (a) A possible reconstruction stencil for a quadratic

reconstruction in high-order k-exact finite-volume scheme. (b)

The partition of a spectral volume into six control volumes

supporting a quadratic reconstruction.
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The discrete formula of the integral conservation

law, Eq. (6.2), for a spectral volume with M faces is

expressed as

dui

dt
þ
1

Vi

XM
m¼1

Z
Am

ðF � nÞdA. (6.4)

The surface or line integral on each face or edge,

respectively can be performed with a kth order accurate

Gauss quadrature as followsZ
Am

ðF � nÞdA ¼
XJ

j¼1

omjF ðuðxmj ; ymjÞÞ � nmAm

þ Oðhk
Þ, ð6:5Þ

where omj are the Gauss quadrature weights and xmj ; ymj

are the Gauss quadrature points.

A kth order accurate approximation of the state

variable in the spectral volume (SV) Si can be obtained

with a ðk � 1Þth order polynomial in x and y as

piðx; yÞ ¼ uðx; yÞ þ Oðhk
Þ; ðx; yÞ 2 Si. (6.6)

This approximation of the state variable is in general

discontinuous across the SV boundaries unless the state

variable is a ðk � 1Þth order polynomial or less. Similar

to the FV or DG methods, the flux integration on the

two sides of the SV faces involves two disconti-

nuous state variables. Therefore, this flux integration is

carried out using an exact or an approximate Riemann

solver

F ðuðxmj ; ymjÞÞ � nm

ffi FRiemannðpiðxmj ; ymjÞ; pi;mðxmj ; ymjÞ; nmÞ þ Oðhk
Þ,

ð6:7Þ

where pi;m is the kth order approximation of the exact

state variable in the neighboring cell.

The kth order accurate scheme of the SV, Si is

dui

dt
þ
1

Vi

XM
m¼1

XJ

j¼1

omjFR ðpi; pi;m; nmÞAm ¼ Oðhk
Þ. ð6:8Þ

For a high-order FV method, including FV ENO and

WENO schemes, the high-order polynomial approxima-

tion of the state variable on the cell under consideration

(see Fig. 108a) is obtained using a stencil that contains

the cell and sufficient number of neighboring cells. For a

DG method, on the other hand, the polynomial form is

assumed and the expansion coefficients are the variables.

In the SV method, instead of using a large number of

neighboring cells, the reconstruction is performed by

partitioning the SV into subcells called control volumes

(see Fig. 108b). The order of accuracy of the SV method

is determined by the number of CVs in which each SV is

subdivided. The weak analogy between the DG method

and the SV method is that for the DG method the order

of accuracy is related to the number of nodes on the
element while in the SV method is determined by

the number of subdivisions in control volumes. Possi-

ble minimum CVs subdivisions of a SV for linear,

quadratic, and cubic data reconstructions are shown in

Figs. 109–111, respectively.

The cell-averaged state variables ui for the spectral

volumes Si are updated from the time level n to the time

level nþ 1 with Eq. (6.8). The crucial step in the SV

method is that the update Dui ¼ unþ1
i � un

i must be

scattered back to the cell-averaged variables in the

control volumes ci; j in Si. Then the same high-order

reconstruction can be used again at the time level nþ 1

to the time level nþ 2, etc. The relationship between the

cell-averaged variables for Si and the cell-averaged

variables for the CV in Si is

ui ¼

PK
j¼1ui; jV i; j

V i

, (6.9)

where ui; j denotes the cell-averaged state variable of the

jth control volume ci; j of Si and Vi; j is its volume. The

total number of CV in Si is K and Vi ¼
PK

j¼1 Vi; j .

Furthermore, in order to ensure conservation the CVs

updates must satisfy

Dui ¼

PK
j¼1 Dui; jV i; j

V i

. (6.10)

A scattering scheme for high-order ðk42Þ reconstruc-
tion is obtained as follows. Each CV inside a SV is

treated separately to update the cell-averaged state

variable for the CV. Inside a particular SV, however,

the state variables are continuous across the interior

boundaries of the CV. Therefore, it is not necessary to

use a Riemann flux or flux splitting for the boundaries of

the CVs. At the CVs boundaries analytic fluxes are used

and Riemann fluxes are only necessary at the SV

boundaries. High-order accuracy is preserved by

using high-order quadratures not only for the Riemann

fluxes at the SV boundaries, but also for the ana-

lytical fluxes through the interior CV boundaries within

the SV.
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Fig. 109. Control volumes in a triangular linear spectral

volume. (a) Type 1, n1 ¼ 0, n3 ¼ 1, n6 ¼ 0. (b) Type 2, n1 ¼ 0,

n3 ¼ 1, n6 ¼ 0.

Fig. 110. Possible triangular quadratic spectral volume parti-

tions. (a) Type 1 with d ¼ 1
3
and Type 2 with d ¼ 1

4
; n1 ¼ 0,

n3 ¼ 2, n6 ¼ 0. (b) A singular partition; n1 ¼ 0, n3 ¼ 0, n6 ¼ 1.

Fig. 111. Possible cubic triangular spectral volumes. (a) Type 1,

n1 ¼ 1, n3 ¼ 1, n6 ¼ 1. (b) Type 2 with d ¼ 1
6
and Type 3 with

d ¼ 1
15
; n1 ¼ 1, n3 ¼ 1, n6 ¼ 1. (c) n1 ¼ 1, n3 ¼ 1, n6 ¼ 1. (d)

n1 ¼ 1, n3 ¼ 3, n6 ¼ 0.
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In summary, the main steps for a kth order (k � 1

polynomial reconstruction) SV method include:
(1)
 Computation of the state variables at the quadrature

points.
(2)
 Use of a kth order quadrature (exact for k � 1

polynomial) and a Riemann solver to compute the

surface fluxes at the SV boundaries.
(3)
 Use of a kth order quadrature and analytic fluxes to

compute the surface fluxes at the CV boundaries.
(4)
 Use of a suitable time marching scheme.
It appears that the SV method shares many of the DG

method desirable features, e.g. it is compact, therefore

suitable for parallel implementation, high-order accu-

rate, conservative and capable of handling complex

geometries. In fact, Zhang and Shu [259] performed an

analysis of the SV method considering the SV method as

a Petrov–Galerkin finite-element method where the

solution space and the test function space are different.

The SV method requires larger number of flux

computations at the CV boundaries, while the DG

method requires evaluation of volume integrals. The

implementation of the SV method is presented in detail

starting from the one-dimensional scalar conservation

law.

6.2. SV method in one dimension

Consider the one-dimensional conservation law in

½a; b


quðx; tÞ

qt
þ

qf ðuðx; tÞÞ

qx
¼ 0.

uðx; 0Þ ¼ u0ðxÞ. (6.11)

The domain ½a; b
 is divided into N nonoverlapping

SVs

½a; b
 ¼
[N
n¼1

Si; Si ¼ ½xi�1=2; xiþ1=2
, (6.12)

where xiþ1=2 � xi�1=2 ¼ hi.

Given the desired order of accuracy k, for the

numerical solution of Eq. (6.11), each spectral volume

Si is subdivided into k control volumes fxi; jþ1=2g
k
j¼0

denoted ci; j with xi; jþ1=2 ¼ xi�1=2 and xi;kþ1=2 ¼ xiþ1=2

(see Fig. 112).

The cell-averaged state variables for ci; j are

ui; j ¼

R xi; jþ1=2
xi; j�1=2

uðx; tÞdx

hi; j

;
i ¼ 1; . . . ;N;

j ¼ 1; . . . ; k;
ð6:13Þ

where hi; j ¼ xi; jþ1=2 � xi; j�1=2.

6.2.1. Reconstruction for SV in one dimension

The reconstruction problem is: Given the cell-aver-

aged values ui; j for all CVs in Si construct a polynomial

piðxÞ for Si of degree k � 1 the most such that piðxÞ is a

kth order accurate approximation of uðxÞ inside Si, e.g.

piðxÞ ¼ uðxÞ þ Oðhk
Þ; x 2 Si; i ¼ 1; . . . ;N. ð6:14Þ



ARTICLE IN PRESS

hi,j
xi, j −1/2 xi, j+1/2 xi, k+1/2 ≡ xi+1,1/2

Ci,1 Ci, k Ci+1,1

  

xi-1, k+1/2 ≡ xi,1/2

Si−1 Si+1
Si

Ci-1, k 

Control Volumes Ci, j = (xi, j-1/2, xi, j+1/2) , j =1,....,k

with{ui,j} cell averaged values in each Ci,j

subdivision of each spectral volume Si
       into no-equal size CVs, Ci,j

Ci, j

Fig. 112. Subdivision of the spectral volume Si into control

volumes for the one-dimensional problem.
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In particular, piðxÞ gives the following approximation of

uðxÞ on the CV boundaries

ui; jþ1=2 � piðxi; jþ1=2Þ

¼ uðxi; jþ1=2Þ þ Oðhk
Þ;

i ¼ 1; . . . ;N;

j ¼ 0; . . . ; k:
ð6:15Þ

This reconstruction problem is solved with the same

method presented in Section 4 for the ENO reconstruc-

tion. For completeness, the procedure of Section 4 is

repeated here in SV context.

There is a unique polynomial of degree k � 1 at most

whose cell average in each of the CVs in Si (see Fig. 112)

satisfiesR xi; jþ1=2
xi; j�1=2

piðxÞdx

hi; j

¼ ui; j ; j ¼ 1; . . . ; k. (6.16)

This is the polynomial we are looking for in Eqs.

(6.14) and (6.15). The mappings from given cell averages

ui; j to the CV boundary values of the state variables are

linear. Therefore, coefficients crj can be found, which

depend on the order of accuracy k and the CV size hi; j in

Si but not on u itself, such that

ui; jþ1=2 ¼
Xk

r¼1

crj ui;r; j ¼ 0; . . . ; k. (6.17)

As a result, given the k cell averages ui;1; . . . ; ui;k for

the CVs in Si the reconstructed point values at the CV

boundaries xi; jþ1=2, computed from Eq. (6.17), are kth

order accurate

ui; jþ1=2 ¼ uðxi; jþ1=2Þ þ Oðhk
Þ; j ¼ 0; . . . ; k. (6.18)

The primitive function UðxÞ of uðxÞ is used to obtain

the constants crj in Eq. (6.17). The primitive function of

uðxÞ is

UðxÞ ¼

Z x

xi;1=2

uðxÞdx; x 2 Si. (6.19)
At the control volume boundaries, Uðxi; jþ1=2Þ is

exactly known from the cell averages ui; j .

Uðxi; jþ1=2Þ ¼
Xj

r¼1

Z xi;rþ1=2

xi;r�1=2

uðxÞdx

¼
Xj

r¼1

ui;rhi;r; j ¼ 1; . . . ; k

Uðxi;1=2Þ ¼ 0 for j ¼ 0: ð6:20Þ

The unique polynomial that interpolates Uðxi; jþ1=2Þ,

j ¼ 0; . . . ; k is PiðxÞ. Then for piðxÞ ¼ P0iðxÞ have

1

hi; j

Z xi; jþ1=2

xi; j�1=2

piðxÞdx ¼
1

hi; j

Z xi; jþ1=2

xi; j�1=2

uðxÞdx

¼ ui; j ; j ¼ 1; . . . ; k. ð6:21Þ

Therefore, piðxÞ � P0iðxÞ is the polynomial of

Eq. (6.14) that satisfies the accuracy requirement of

Eq. (6.15).

The constants crj are obtained considering the

Lagrange interpolation polynomial PiðxÞ

PiðxÞ ¼
Xk

r¼0

Ui;rþ1=2

Yk

m¼0
mar

x� xi;mþ1=2

xi;rþ1=2 � xi;r�1=2
; x 2 Si,

ð6:22Þ

piðxÞ ¼
Xk

r¼1

hi;r

Xk

q¼r

1

½ðxi � xi;1=2Þ . . . ðx� xi;qþ1=2Þ

0

8>><>>:
�
X
m¼0
maq

Yk

p¼0
paq;m

ðx� xi;pþ1=2Þ

9>>=>>;ui;r

Xk

r¼1

frðxÞui;r.

ð6:23Þ

Considering that piðxÞ ¼ P0iðxÞ and substituting

Eq. (6.17) in the expression for piðxÞ obtain

crj ¼ hi;r

Xk

q¼r

1

ðx� xi;1=2Þðx� xi;3=2Þ . . . ðx� xi;qþ1=2Þ

�
Xk

m¼0
maq

Yk

p¼0
paq;m

ðxi; jþ1=2 � xi;pþ1=2Þ. ð6:24Þ

For CV of equal size Eq. (6.24) simplifies to

crj ¼
Xk

q¼r

1Qk
p¼0
paq

ðr� pÞ

Xk

m¼0
maq

Yk

p¼0
paq;m

ðj � qÞ. (6.25)

At the interior CV boundaries in Si the state variables

are continuous and it is not necessary to use a numerical

flux to update the reconstructed variables at the CV

boundaries. In other words, for the update at the
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interior

dui; j

dt
¼ �

1

hi; j

ðbf i; jþ1=2 �
bf i; j�1=2Þ (6.26)

the numerical flux is the analytical flux functionbf i; jþ1=2 ¼ f ðui; jþ1=2Þ; j ¼ 1; . . . ; k � 1.

At the SV boundaries xi�1=2 and xiþ1=2 or xi;1=2 and

xi;kþ1=2 (see Fig. 112) the state variables are discontin-

uous because at xi�1=2 for example there is one value due

to the reconstruction in Si and another due to the

reconstruction in Si�1. Therefore, a numerical flux is

computed at xi�1=2 with a Riemann solverbf i;1=2 ¼
bf Riemannðui�1;kþ1=2; ui;1=2Þ ¼

bf i�1;kþ1=2. (6.27)

The numerical flux must satisfy the following condi-

tion to ensure monotonicity of the first-order scheme
(1)
 Locally Lipschitz and consistent bf ðu; uÞ ¼ f ðuÞ,
(2)
 bf is a nondecreasing function of its first argument,

(3)
 bf is a non-increasing function of the second

argument.
The Lax–Friedrich’s or the Roe flux can be used as

numerical fluxes. Time marching of the semidiscrete

form

du

dt
¼ LðuÞ, (6.28)

u ¼

u1;1

..

.

ui; j

..

.

uN;k

266666666664

377777777775
; LðuÞ ¼

L1;1ðuÞ

..

.

Li; jðuÞ

..

.

LN;kðuÞ

266666666664

377777777775
,

Li; j ¼ �
1

hi; j

½f i; jþ1=2ðuÞ � f i; j�1=2ðuÞ


can be obtained with TVD RK schemes of Section 2.

The reconstruction quality strongly depends on the

choice for CV subdivision. The obvious choice of equal

size CVs subdivision of a spectral volume is not optimal

for high-order ðk43Þ reconstruction. It was found in
[46] that high-order reconstructions on uniform CV

subdivisions are highly oscillatory near the two SV

boundary grid points xi;1=2 and xi;kþ1=2. The source of

this oscillatory behavior for high-order reconstructions

was identified to be the oscillatory behavior of Lagrange

polynomials that interpolate non-polynomial functions

on equidistant points. Taking into account that La-

grange polynomials are used for the interpolations of

Eqs. (6.22) and (6.23) it is expected that the subdivision

of a SV into equal size CVs is not optimal. It was found
in [46] that it is necessary to cluster ‘‘grid points’’ near

the boundaries of the SV interval to make the

reconstruction less oscillatory.

One way to perform CV subdivision is to use the

Gauss-Lobatto points for CV subdivision. For the

standard interval ½�1; 1
 the Gauss-Lobatto points are
defined by

xi; jþ1=2 ¼ � cos
jp
k

� �
; j ¼ 0; . . . ; k. (6.29)

Another clustering function is the hyperbolic tangent

function defined by

xi; jþ1=2 ¼

tanh
2bj

k
� m

� �
tanhðbÞ

; j ¼ 0; . . . ; k, (6.30)

where b is a constant controlling the degree of clustering
near the endpoints. Large values of b result in stronger
grid clustering. The value b ¼ 0:6 in Eq. (6.30) yields
quite even distribution and the polynomials are highly

oscillatory at the end points. For b ¼ 1:6 a grid similar
to the Gauss-Lobatto grid is obtained and the oscilla-

tions of the polynomials diminishes significantly.

It is well known that the Gibbs phenomenon

associates with high-order schemes in the presence of

discontinuities causes loss of monotonicity in the

solution of hyperbolic conservation laws. The SV

method is not excluded for Gibbs phenomenon. In

particular, since the lowest order reconstruction for the

SV method is linear (second-order accurate scheme), and

there are no linear second- or higher-order schemes

which guarantee monotonicity, some limiting approach

must be applied to the SV method to achieve mono-

tonicity. In Ref. [46] the limiting approach originally

developed by van Leer [127,128], is applied. The van

Leer’s approach limits the reconstruction so that the

reconstructed solution is monotonic. Details about

limiting for the SV method in one dimension can be

found in [46].

6.3. Polynomial reconstruction in triangular SVs

Further development of the SV method for two-

dimensional scalar equations was presented by Wang

and Liu in [257]. The two-dimensional formulation of

the SV method is becomes

dui; j

dt
þ

1

Vi; j

XK

r¼1

Z
Sr

ðF � nÞdS ¼ 0, (6.31)

where ui; j ¼ 1=Vi; j

R
ci; j

udV are the cell-averaged

variables for ci; j , K is the total number of faces (or

edges in 2D) in ci; j and Sr denotes the rth face

of ci; j . Using a kth order accurate Gauss quadrature

ðk ¼ mþ 1Þ for the evaluation of the surface integral
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in Eq. (6.31)Z
Sr

ðF � nÞdS ¼
XJ

q¼1

orqFðuðxqr; yrqÞÞ � nrSr

þ OðArh
k
Þ, ð6:32Þ

where J ¼ ðk þ 1Þ=2 is the total number of quadrature
points, orq are the Gaussian quadrature weights, and h is

the maximum length of all CVs obtain

dui; j

dt
þ

1

Vi; j

XK

r¼1

XJ

q¼1

orq Fðuðxrq; yrqÞÞ � nSr þ Oðhk
Þ.

(6.33)

Assuming that a multidimensional polynomial in x

and y of degree k � 1 the most exists on Si which is the

kth order approximation of the state variable in Si

piðx; yÞ ¼ uðx; yÞ þ Oðhk
Þ ðx; yÞ 2 Si. (6.34)

This polynomial approximation yields discontinuous

state variables across the SV boundaries (unless the

variables are polynomials of k � 1 degree or less) and a

flux integration with an exact or approximate Riemann

solver is needed, i.e.

F ðuðxrq; yrqÞÞ � nr ¼ FRiemannðpiðxrq; yrqÞ; pi;rðxrq; yrqÞ; nrÞ

þ Oðpi � pi;rÞ, ð6:35Þ

where pi;r denotes the reconstruction polynomial of a

neighboring CV cr
i; j which shares the face Ar with the ci; j

and since both pi and pi;r are kth order accurate

approximations of the exact state variables the semi-

discrete kth order accurate scheme for ci; j is

dui; j

dt
þ

1

Vi; j

XK

r¼1

XJ

q¼1

orq

�FRiemannðpiðxrq; yrqÞ; pi;rðxrq; yrqÞ; nrÞSr þ Oðhk
Þ

ð6:36Þ

or in vector form

du

dt
¼ RhðuÞ, (6.37)

u ¼

u1;1

ui; j

uI ;N

264
375; RhðuÞ ¼

R1;1ðuÞ

Ri; jðuÞ

RI ;N ðuÞ

264
375,

Ri; j ¼ �
1

Vi; j

XK

r¼1

XJ

q¼1

orqFRiemannðpiðxrq; yrqÞ,

pi;rðxrq; yrqÞ; nrÞSr.

Approximation of the solution can be obtained with

any linearly independent functions. Reconstruction in

[257] is obtained with polynomial basis functions as in

Eq. (6.34). The dimension of the polynomial approx-
imation space Pm of degree m polynomials in two

dimensions is

Nm ¼
mþ 2

2

� �
¼
ðmþ 1Þðmþ 2Þ

2
. (6.38)

The reconstruction of u in Pm is achieved by

partitioning Si into a Nm nonoverlapping CVs, ci; j ,

j ¼ 1; . . . ;Nm. The reconstruction problem is to find a

polynomial pm 2 Pm such thatZ
ci; j

pmðx; yÞdV ¼

Z
ci; j

uðx; yÞdV ; j ¼ 1; . . . ;Nm.

(6.39)

Introducing the complete polynomial basis elðx; yÞ 2 Pm,

he polynomial pm can be expressed as

pm ¼
XNm

l¼1

clelðx; yÞ, (6.40)

where e ¼ ½e1; . . . ; eN 

T is the basis function vector and

cl , l ¼ 1; . . . ;N are the reconstruction coefficients, and

substituting Eq. (6.40) in Eq. (6.39) obtain

1

Vi; j

XNm

l¼1

cl

Z
ci; j

elðx; yÞdV ¼ ui; j ; j ¼ 1; . . . ;Nm. (6.41)

This equation is written in matrix form as

½R
c ¼ u, (6.42)

where u ¼ ½ui;1 . . . ui;N 

T and ½R
 is the reconstruction

matrix given by

½R
 ¼

1

V1

Z
ci;1

e1ðx; yÞdV
1

V1

Z
ci;1

eN ðx; yÞdV

1

VN

Z
ci;N

e1ðx; yÞdV
1

VN

Z
ci;N

eN ðx; yÞdV

266664
377775
(6.43)

and the reconstruction coefficients in Eq. (6.40) are

obtained by

c ¼ ½R
�1u. (6.44)

Substituting of Eq. (6.44) in Eq. (6.39) yield an

expression of pm in terms of the basis functions as

pm ¼
XNm

j¼1

Ljðx; yÞui; j ¼ ½L
u, (6.45)

½L
 ¼ e½R
�1. (6.46)

The values of u at the quadrature points xrq, yrq within

the SV are given according to Eq. (6.45) by

pmðxrq; yrqÞ ¼
XNm

j¼1

Ljðxrq; yrqÞui; j . (6.47)

This equation expresses an interpolation of a functional

value at a point using the cell-averaged values with
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Fig. 113. The schematic of the mapping from the physical

triangle to the standard triangle.
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weights equal to the basis functional value evaluated at

the corresponding point.

Spectral volumes of various types, e.g. triangular,

quadrilateral, or polygons of other types are possible

choices. The special case where all SVs are triangular

and all CVs are polygons with straight edges is

considered. For this case, SVs with different shapes,

which are partitioned in CVs of similar geometrical

shape, have the same reconstruction, e.g. the functional

values of the bases at corresponding mesh points are

the same.

For triangular shape SVs, consider the map

c : s ! D, of Fig. 113a. This ‘‘map’’ transforms an

arbitrary triangle s to a right triangle D. Another map

(see Fig. 113b) often used transforms s to an equilateral

triangle E. Assume that one node of s is at the origin

r0 ¼ ð0; 0Þ and the other two at r1 ¼ ðx1; y1Þ and

r2 ¼ ðx2; y2Þ. The nodes corresponding to r0, r1 and r2
in D are ð0; 0Þ, ð1; 0Þ and ð0; 1Þ, respectively. The map c
can be written as

c : r ¼ r1xþ r2Z; xX0; ZX0; xþ Zp1. (6.48)

The map of Eq. (6.48) is linear therefore for a

complete set of basis functions eðx; yÞ 2 Pm have

dV ¼ dxdy ¼ 2V dxdZ; V ¼ 1
2
jr1 � r2j, (6.49)

eðx; yÞ ¼ eðx; ZÞT , (6.50)

where T is the transformation matrix containing only

the geometry information. For example, if eðx; yÞ ¼
½1; x; y; x2; xy; y2
 is the hierarchical basis then T becomes

T ¼

1 0 0 0 0 0

0 x1 y1 0 0 0

0 x2 y2 0 0 0

0 0 0 x21 x1y1 y21

0 0 0 2x1x2 x1y2 þ x2y1 2y1y2

0 0 0 x22 x2y2 y22

26666666664

37777777775
.

(6.51)

the Eq. (6.46) becomes

L ¼ ½e1ðx; ZÞ; . . . ; eN ðx; ZÞ


¼

R
ci;1

e1ðx; ZÞdxdZ � � �
R

ci;1
eN ðx; ZÞdxdZ

..

. ..
.R

ci;N
e1ðx; ZÞdxdZ � � �

R
ci;N

eN ðx; ZÞdxdZ

266664
377775
�1

�

V1

2V

. .
.

VN

2V

26666664

37777775. ð6:52Þ
The reconstruction formula of Eq. (6.47) with

Eq. (6.52) are used to evaluate the state variables at

the quadrature points. Triangles of different shape have

identical bases Ljðx; ZÞ in the transformed space D if

their partition into polygonal CVs are similar. The

reconstruction is carried out only once for an arbitrary

shape triangle. The matrix R in Eq. (6.43) is inverted

analytically with Mathematica using exact arithmetic to

derive the reconstruction coefficients, which are identical

for all triangles. Exact integration formulas of poly-

nomials over polygons with arbitrary shape can be

found in [261].

All the CVs in a SV use the same data reconstruction

therefore, it is not necessary to use a Riemann solver for

the interior boundaries between the CVs of a particular

SV. For the interior CV boundaries, exact fluxes are

used. Use of Riemann fluxes is only necessary at the

spectral volume boundaries.
6.4. Linear, quadratic, and cubic SV reconstructions

In the previous section, it was shown that the

reconstruction problem is equivalent for all triangles.

Different order reconstructions are carried out for the

transformed space using the equilateral triangle E of

Fig. 113b. The triangle E is partitioned into N

nonoverlapping CVs that satisfy the conditions:
�
 The CVs are symmetric with respect to all symmetries

of the triangle.
�
 The CVs are convex.
�
 The CVs are polygons with straight lines.
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The last condition is not absolutely required but

simplifies the formulation. In general, however, iso-

parametric SV can be used to handle curved boun-

daries. Possible partitions of the standard equi-

lateral triangle for cubic reconstruction were shown in

Fig. 111.

Given a partition a necessary condition for valid

reconstruction is that the matrix R of Eq. (6.43) is

nonsingular. Furthermore, in the one-dimensional SV it

was mentioned that not all nonsingular reconstructions

are convergent. High-order polynomial reconstruction

based on equidistant CVs, for example, are not

convergent in one dimension although the reconstruc-

tions are nonsingular.

A criterion for valid, convergent partitions [257] is

based on the value of

kGPk ¼ max
x2E

XN

j¼1

jLjðx; ZÞj, (6.53)

where

lðx; ZÞ ¼
XN

j¼1

jLjðx; ZÞj (6.54)

is referred to as Lebesgue function of the interpolation

and kGPk is the Lebesgue constant. The smaller the

Lebesgue constant the better the interpolation poly-

nomial. Therefore the criterion for the best partition is

to obtain small kGPk. Partitions of the standard

equilateral triangle E which support linear, quadratic,

and cubic reconstructions with small Lebesgue constants

were given in [257].
6.5. Spectral volume partitions

Consider the standard equilateral triangle E and

partitions of E in convex, symmetric CVs with straight

edges. Partitions in CVs that contain the centroid of E

must be symmetric with respect to the three edges and

vertices. Simple inspection shows that at most one type

of CV can exist, and this CV is said to possess degree 1

symmetry. Similarly, a CV is said to possess degree 3

symmetry when two other symmetric CVs exist in the

same partition, and 6 symmetry when five other

symmetric CVs exist in the same partition. The degrees

of 1, 3, and 6 symmetry groups in a partition are

denoted as n1, n3, and n6. Partitions with different

degrees of symmetry are shown in Fig. 111 for cubic

spectral volumes. Different partitions for linear and

quadratic spectral volumes are shown in Figs. 109 and

108, respectively.

The total number of CVs in the partition n1 þ 3n3 þ

6n6 is equal to the dimension of the approximation space

that supports the unique reconstruction polynomial of
degree m, i.e.

n1 þ 3n3 þ 6n6 ¼
ðmþ 1Þðmþ 2Þ

2
. (6.55)

Linear SV ðm ¼ 1Þ: The solution of Eq. (6.55) for

m ¼ 1 yields two partitions. These partitions, Type 1

and Type 2 are shown in Fig. 109a and b, respectively.

The Lebesgue constant for Type 1 is 13
3
¼ 4:3333 and for

Type 2 43
15
¼ 2:8667, therefore, theL1 error with Type 2

should be smaller than the error with Type 1 SV located

at the middle of the edge.

Linear reconstruction requires 1G quadrature

point, for the evaluation of the line integral. Due to

symmetry, functional values of the cardinal bases are

required at two quadrature points, i.e. total of six

coefficients which are the same for all triangles with

similar partitions.

Quadratic SV ðm ¼ 2Þ: The solution of Eq. (6.55) for

m ¼ 2 yields two partitions. These partitions are shown

in Figs. 110a and b, respectively. The partition of

Fig. 110b is singular. For the partition of Fig. 110a all

partitions with 0odo0:5 are admissible. The partitions
d ¼ 1

3
and d ¼ 1

4
(corresponding to the Gauss–Lobatto

points of the edge) were considered in [257]. The

partition with d ¼ 1
3
is called Type 1 and the partition

with d ¼ 1
4 is called Type 2. The Type 1 partition

has Lebesgue constant 9.3333 and for the Type 2

partition the Lebesgue constant is 8, and this partition is

expected to yield more accurate results. Quadratic

reconstruction requires 2G quadrature points for the

evaluation of the line integral. Due to symmetry, 30

coefficients corresponding to functional values of

the bases at five quadrature points must be computed

and stored.

Cubic SV ðm ¼ 3Þ: The solution of Eq. (6.55) for m ¼

3 yields two different types of partitions. Among

possible partitions shown in Fig. 111, only the partitions

of Fig. 111a and c are admissible while the partition of

Fig. 111d is singular. Variation of the partition distance

d in Fig. 111b affects the value of Lebesgue constant.

The smallest value of the Lebesgue constant 3.44485 is

obtained for d ¼ 1
15
. Cubic reconstruction requires two

Gauss quadrature points for the evaluation of the line

integral. Due to symmetry, 100 coefficients correspond-

ing to functional values of the bases at 10 quadrature

points must be computed and stored.
6.6. Multidimensional limiters

The TVB idea [262] is used in [257] for the

construction of limiters in order to obtain uni-

form accuracy away from discontinuities. Consider a

SV with a partition into N control volumes. Given

the cell-averaged values ui; j of the variables for

all CVs and the k � 1 reconstruction polynomial
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R

ci; j
pi ðx; yÞdV ¼ Vi; jui; j j ¼ 1; . . . ;N and denoting

Durq ¼ piðxrq; yrqÞ � ui; j ;
r ¼ 1; . . . ;K ;

q ¼ 1; . . . ; J
(6.56)

it is not necessary to limit the data if

jDurqjp4Mh2rq;
r ¼ 1; . . . ;K ;

q ¼ 1; . . . J:
(6.57)

Similar to the one-dimensional case in Eq. (6.57) M

represents some measure of the second derivative of

the solution and hrq is the distance from ðxrq; yrqÞ to the

centroid of ci; j . In Ref. [257], M was selected close to the

maximum absolute value of the second derivative over

the domain.

If Eq. (6.57) is violated for any r and q, then it is

assumed that ui; j is near a steep gradient and limiting is

applied. Therefore, instead of the polynomial piðx; yÞ in
ci; j where Eq. (6.57) is violated it is assumed that the

data is linear, i.e.

ui; jðx; yÞ � ui; j þ rui; j � ðr� ri; jÞ 8r 2 ci; j , (6.58)

where ri; j is the position vector of the centroid of ci; j . At

the same time, it is required that the reconstructed

solutions at the quadrature points of ci; j satisfy the

monotonicity constraint.

umini; j pui; jðxrq; yrqÞpumaxi; j ;
r ¼ 1; . . . ;K ;

q ¼ 1; . . . ; J ;
(6.59)

where umini; j and umaxi; j are

umaxi; j ¼ max ui; j max
1prpK

ui; j;r

� �
,

umini; j ¼ min ui; j min
1prpK

ui; j;r

� �
, (6.60)

where ui; j;r denotes cell averages at neighboring CV of

ci; j sharing the face r. For highest resolution, the

magnitude of the solution gradient rui; j in Eq. (6.58)

must be maximized. Several different approaches were

suggested in [257] for the estimation of rui; j .

In the first approach, all gradients are reconstructed

using cell-averaged data at ci; j and its neighbors. If any

of the reconstructed variable at the quadrature points is

out of the range ½umini; j ; umaxi; j 
 then the gradient is limited.

In the second approach, only one gradient is computed

and limited using so that the reconstructed solution at

all quadrature points satisfy the monotonicity con-

straint. This limiter is called ‘‘minmod’’ limiter in [257].

In addition to these approaches where the gradients of

the solution are reconstructed using data from neighbor-

ing CVs, a third approach was suggested in Ref. [257]

that uses the polynomials, which are available in the SV

for the reconstruction. The limiter of this approach,

which is named ‘‘CV’’ limiter in Ref. [257], is more

efficient than the limiters in the other two approaches.
6.7. The SV method for two-dimensional systems

Following the basic formulation for the development

of the SV method of [257,258], which was presented in

the previous section, Wang et al. [260] continued the

development of the SV method for hyperbolic conserva-

tion laws. The two-dimensional Euler equations in

conservative form U ¼ ½r; ru; rv; rE
 were considered

[260]. The cell-averaged conservative variable u of any

conservative variable in U is

ui; jðtÞ ¼

R
ci; j

uðx; y; tÞdxdy

Vi; j

;
j ¼ 1; . . . ;m;

i ¼ 1; . . . ;N;
(6.61)

where Vi; j is the volume of ci; j . Given the cell averages

from Eq. (6.61) a polynomial piðx; yÞ of degree k � 1 at

most ðpiðx; yÞ 2 Pk�1Þ can be obtained such that piðx; yÞ
is a kth order accurate approximation of uðx; yÞ inside
Si, i.e.

piðx; yÞ ¼ uðx; yÞ þ Oðhk
Þ;

ðx; yÞ 2 Si;

i ¼ 1; . . . ;N:
(6.62)

The reconstruction polynomialR
ci; j

piðx; yÞdxdy

Vi; j

¼ ui; j ; j ¼ 1; . . . ;m (6.63)

can be found analytically as for the scalar equation case

and is expressed as

piðx; yÞ ¼
Xm

j¼1

Ljðx; yÞui; j , (6.64)

where Liðx; yÞ 2 Pk�1 are the shape functions satisfyingR
ci; j

Lmðx; yÞdxdy

Vi; j

¼ djm. (6.65)

The shape functions can be obtained analytically. The

values of the shape functions at the Gauss quadrature

points are given by Wang et al. [260].

The integral form of the Euler equations for CV mean

values is

dUi; j

dt
þ

1

Vi; j

XK

r¼1

I
Sr

ðf � nÞdS ¼ 0, (6.66)

where Ui; j is the CV-averaged vector of the conservative

variables in ci; j , f ¼ ðE;F Þ, is the flux vector K is the

number of faces of the control volume ci; j , and Sr

denotes the rth face (edge) of ci; j . The surface (line)

integrals are evaluated numerically using a kth order

accurate Gauss quadrature formula as followsI
Sr

ðf � nÞdS ¼
XJ

q¼1

orqfðUðxrq; yrqÞÞ � nrSr

þ OðArhÞ
k, ð6:67Þ
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where J ¼ integer½ðk þ 1Þ=2
 is the number of quad-
rature points on the rth edge, and orq are the Gauss

quadrature weights. The resulting conservative variables

obtained with the polynomial distribution of Eq. (6.64)

on each SV are discontinuous across the SV boundaries

and flux integration is carried out using approximate

Riemann solvers as

fðUðxrq; yrqÞÞ � nr

� f RiemannðULðxrq; yrqÞ;URðxrq; yrqÞ; nrÞ. ð6:68Þ

Using Eqs. (6.65)–(6.67) obtain the following semi-

discrete scheme for the CV ci; j

dUi; j

dt
þ

1

Vi; j

XK

r¼1

XJ

q¼1

orq

�f RiemannðULðxrq; yrqÞ;URðxrq; yrqÞ; nrÞSr ¼ 0. ð6:69Þ

The Roe’s and Rusanov approximate Riemann

solvers were used in [260]. The flux evaluation with

these Riemann solvers is obtained as

Roe’s flux:

f RoeðUL;UR; nÞ

¼ 1
2
½f ðULÞ þ f ðURÞ � jAjðUR �ULÞ
, ð6:70Þ

where A ¼ qE
qU

nx þ
qF
qU

ny and

jAj ¼ RjLjR�1 (6.71)

with R and R�1 the right and left eigenvector matrices,

and L the diagonal eigenvalue matrix all evaluated at the
Roe-averages.

Rusanov flux:

f RusanovðUL;UR; nÞ

¼ 1
2
½f ðULÞ þ f ðURÞ � aðUR �ULÞ
, ð6:72Þ

where a is the maximum absolute eigenvalue

a ¼ jvnj þ c, (6.73)

where vn and c are the average normal velocity and

sound speed computed from UL and UR.

6.8. Multidimensional TVD and TVB limiters

Stability is maintained for the nonlinear Euler

equations by performing data limiting with TVD or

TVB limiters. TVD limiters enforce strict monotonicity

by degrading solution accuracy at local extrema. TVB

limiters relax monotonicity requirements in order to

achieve uniform accuracy away from discontinuities.

The limiters in [260] the component-wise limiting

approach was chosen because of its efficiency compared

with the characteristic-wise approach of limiting. The

following numerical monotonicity criterion was estab-

lished in [260] for each CV.

umini; j pui; jðxrq; yrqÞpumaxi; j , (6.74)
where umini; j and umaxi; j are the minimum and the maximum

cell-averaged solutions among all neighboring CVs. The

neighboring CVs either share a face (face neighbors) or a

node (node neighbors) with ci; j , which is the control

volume under consideration. For the second-order

scheme, the face neighbors (see Fig. 109a) were used to

define umini; j and umaxi; j for the limiter. This choice was

made in order to reduce the number of cells that are

limited in the higher-order schemes. The TVB idea is

employed for limiting in [260] and small oscillations are

allowed in the solution. Expressing the reconstruction

for the quadrature points as

Durq ¼ piðxrq; yrqÞ � ui; j (6.75)

no limiting is required if

jDurqjp4Mqh2rq, (6.76)

where hrq ¼ jri; j � rrqj is the distance of the CV centroid

to the quadrature point. Similar to the scalar case, Mq

can be chosen to be the maximum second derivative of

the solution. In [260], Mq was scaled as

Mq ¼ Mðumax � uminÞ, (6.77)

where umin and umax are computed over the entire

computational domain. No data limiting is applied when

Eq. (6.76) is satisfied, even if the condition of Eq. (6.75)

is not fulfilled. A CV is assumed to be close to

a discontinuity of Eq. (6.76) and (6.75) are violated.

For limiting, the solution in the CV is assumed locally

linear, i.e.

ui; jðx; yÞ ¼ ui; j þ rui; j � ðr� ri; jÞ 8r 2 ci; j . (6.78)

Furthermore, the solution is assumed linear for all

other CVs inside an SV if any of the CVs in the SV is

limited. The gradient computed with cell-averaged

solution that satisfies Eq. (6.76) is limited (replaced) by

multiplying with a scalar f 2 ½0; 1
 so that Eq. (6.78)
becomes

ui; jðx; yÞ ¼ ui; j þ frui; j � ðr� ri; jÞ, (6.79)

where the scalar f is computed as

f ¼

min 1;
Durq

umaxi; j � ui; j

 !
if Durq40;

min 1;
Durq

umini; j � ui; j

 !
if Durqo0;

1 otherwise:

8>>>>>>><>>>>>>>:
(6.80)

For M ¼ 0, this limiter becomes TVD.

At the interior CV boundaries inside a SV the

reconstructed conservative variables are continuous,

since the analytical flux is used if no limiters are

imposed. The monotonicity condition of Eq. (6.75) does

not guarantee positive pressure for problems with strong

discontinuities because it strictly enforces monotonicity
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only for the conserved variables. To ensure positive

pressure near strong discontinuities it is suggested in

[260] to limit pressure instead of total energy. The total

energy is computed at the quadrature points using the

limited reconstructed density, momentum and pressure.

This limiting that guarantees positivity in both density

and pressure was found very robust [260].
6.9. The SV method for the Navier–Stokes equations

The SV method was recently extended to solve the

Navier–Stokes equations [263]. The viscous terms were

treated with a mixed formulation named in [263] local

discontinuous Galerkin approach. It was shown [263]

that the desired order of accuracy is achieved with this

formulation for the scalar advection diffusion equation

and for the Navier–Stokes with reconstruction poly-

nomials of all orders. The extension of the SV method to

the Navier–Stokes equations is based on developments

for the SV method based on the one-dimensional pure

diffusion equation [264]. The local SV (LSV) and the

penalty SV (PSV) approaches were found consistent,

stable and convergent. Furthermore, it was shown [264]

that the LSV approach achieved the optimal order

of accuracy, i.e. ðk þ 1Þth order for degree k poly-

nomial reconstruction, while the PSV approach

achieved only kth order accuracy for even k. As a

result, the LSV approach was selected in [263] for the

extension to the Navier–Stokes equations. The LSV

formulation is briefly presented for one-dimensional

linear and nonlinear and two-dimensional convection–

diffusion equations.
6.9.1. SV formulation for 2D convection–diffusion

equation

The convection–diffusion equation in the domain O is

qu

qt
þ r � ðbuÞ � r � ðmruÞ ¼ 0, (6.81)

where b is the convective speed and m is the diffusion
coefficient. The domain O is discretized with the spectral
volume method. Following the local DG (LDG)

approach an auxiliary variable q ¼ ru was defined in

[263] to obtain the following system:

q ¼ ru,

qu

qt
þ r � ðbuÞ � r � ðmqÞ ¼ 0. (6.82)

Integrating Eq. (6.82) by parts in ci; j obtain

qi; j ¼
1

Vi; j

XK

r¼1

I
Sr

bundS,
dui; j

dt
þ

1

Vi; j

�
XK

r¼1

I
Sr

beu � ndS �
XK

r¼1

I
Sr

mbq � ndS

 !
¼ 0.

ð6:83Þ

Using the Roe approximate Riemann solver, which

degenerates in the scalar case to an upwind flux, obtain

for the inviscid flux

eu ¼ uL b � n40;

uR b � no0:

(
(6.84)

The other two numerical fluxes are defined asbu ¼ uL; bu ¼ uR

orbq ¼ qR; bq ¼ qL. (6.85)

The numerical solution of Eqs. (6.83) follows the SV

method described in the previous sections.

6.9.2. Extension of the SV method to the NS equations

Consider the two-dimensional Navier–Stokes equa-

tions written in conservation form

qu

qt
þr � FiðUÞ � r � FvðU ;ruÞ ¼ 0, (6.86)

where U is the conservative variables vector and Fi, Fv
are the inviscid and viscous flux vectors, respectively.

Following the LDG approach for the convection–dif-

fusion equation define the following auxiliary variable:

G ¼ rU . (6.87)

Then Eq. (6.86) becomes

qU

qt
þ r � FiðUÞ � r � FvðU ;GÞ ¼ 0. (6.88)

Considering the integral form of Eq. (6.88) for the CV

ci; j and integrating by parts obtain

Gi; j ¼
1

Vi; j

XK

r¼1

I
Sr

UndS,

dUi; j

dt
þ

1

Vi; j

XK

r¼1

I
Sr

F iðUÞ � ndS

"

�
XK

r¼1

I
Sr

FvðU ;GÞ � ndA

#
¼ 0. ð6:89Þ

Both U and G are discontinuous at SV boundaries.

Therefore, the auxiliary flux, the inviscid fluxes and the

viscous fluxes are replaced by numerical fluxes eU , eF i, andeFv. The auxiliary and viscous fluxes are defined [263] asbU � UL,

eFv � FvðUL;G
RÞ. (6.90)
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For the inviscid fluxes Roe or any other consistent flux

splitting can be used.

Numerical tests were carried out in [263] for the linear

convection–diffusion equation and for the viscous

Burger’s equation. It was found that for the linear

one-dimensional convection–diffusion equation ux þ

ux þ uxx the LSV approach achieved the optimum order

of accuracy. For the one-dimensional viscous Burger’s

equation ut þ uux � muxx ¼ 0, m ¼ 0:1, x 2 ð0; 1Þ with
initial condition uðx; 0Þ ¼ � tanhðx=2mÞ, boundary con-
dition uð0; tÞ ¼ 0, uð1; tÞ ¼ � tanhð1=2mÞ, and exact

solution uðx; tÞ ¼ � tanhðx=2mÞ it was found again that
the LSV approach achieved the optimum orders of

accuracy in all cases, e.g. second-, third- and fourth-

order of accuracy. The LSV approach achieved also

optimum orders of accuracy for the two-dimensional

convection–diffusion equation ut þ cðux þ uyÞ�

mðuxx þ uyyÞ ¼ 0. Furthermore, the LSV method was

tested for laminar flow over a flat plate at Re ¼ 500 and

M ¼ 0:3. The computed results were in good agreement
with the Blasius solution.

6.10. The SV method in three dimensions

The high-order SV method was extended to three

dimensions in Ref. [265]. Similar to the two-dimensional

case presented in the previous section it was shown [265]

that if all grid cell are partitioned into structured sub-

cells, the discretizations become universal and are

reduced to the same weighted sum of unknowns

involving just a few simple adds and multiplies.

The development of the SV method in three dimen-

sions starts with the integral form for a control volume.

Similar to the two-dimensional case the partitions of

each SV into CVs depends on the choice of the basis

functions for the reconstruction. For a complete

polynomial basis, the reconstruction of degree of

accuracy k requires a partition into at least N CVs where

N ¼

k þ 1 1D;
ðk þ 1Þðk þ 2Þ

2
2D;

ðk þ 1Þðk þ 2Þðk þ 3Þ

6
3D:

8>>>><>>>>: (6.91)
Fig. 114. Two-dimensional faces for t
The order of accuracy of the SV method is one order

higher than the reconstruction polynomial degree. The

optimum choice of parameters for the partitions of the

SV in CVs required for certain degree of accuracy is

determined by minimizing the Lebesgue constant of

the reconstruction matrix (see [265] for details). The

partitioning of tetrahedra makes use of the partitioning

of the triangular faces. Comments on the partition of

triangular faces can be found in previous section.

Further information on triangle partitions is given in

[265]. Tetrahedra SV partitions, which yield degree of

accuracy up to three, all CVs have at least one face

of the SV boundary and there are no CVs in the interior

of the SV. All the CVs consist of vertices of the 2D CVs

for each face of the SV connected to the SV centroid

with straight edges. Fig. 114a shows the partition of a

SV face into CVs. For linear partition the four CVs are

hexahedra with all faces being planar quadrilaterals.

There are 12 CV faces on the boundary of the SV and 6

interior CV faces. The CVs for quadratic partitioning

(see Fig. 114b) are members of two symmetry groups.

For the one-parameter partition, one consists of the four

hexahedra at the corners of the SV and includes three

interior no planar faces. The other group consists of the

six mid-edge polyhedra. Each polyhedron consists of

two exterior triangular faces and the two quadrilateral

interior faces it shares with the corner CVs. As in the

two-dimensional case, an analytic minimum value of the

Lebesgue constant does not exist this constant. How-

ever, the Lebesgue constant asymptotes to a value of

approximately 11. A quadratic partition is shown in

Fig. 114b. The six mid-edge CVs are now octahedra with

two pentagonal faces on the SV boundary and six

interior planar quadrilateral faces.

6.11. Results with the SV method

Application of the spectral volume method showed

very good performance for test problems used to

demonstrate the accuracy of other high-order accurate

methods presented in the previous sections.

The first problem considered in [260] is the isentropic

vortex convection (see Section 3 for details on problem

definition). Numerical simulations were carried out until
hree-dimensional SV partitions.
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Fig. 116. Density contours computed on the coarse mesh using

the Rusanov flux and TVD limiter. Thirty even contour lines

between 0.09 and 4.53; (a) second-order SV scheme; (b) third-

order SV scheme; (c) fourth-order SV scheme.
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t ¼ 2 on both regular and irregular meshes. The

Rusanov flux was used and no limiting was necessary

for this problem that has smooth solution at all times. It

was found that the second-order SV is less accurate than

the FV method with the same number of degrees of

freedom. However, the third-order SV method was

found 3.81 times more accurate than the second-order

FV scheme and the fourth-order SV method 435 times

more accurate than the second-order FV scheme with

the same degrees of freedom. The high-order SV

schemes were shown to be [260] more efficient than the

second-order FV scheme in achieving the same solution

quality. For example, the third-order SV scheme had a

relative cost 0.44, and the fourth-order SV scheme had a

0.023 relative cost compared to the FV scheme for the

same solution accuracy.

The performance of the spectral volume method was

tested extensively in [258] for two problems, suggested

by Woodward and Colella [179]. Both problems were

used widely to assess the performance of shock-

capturing methods. The first problem is the Mach 3

wind tunnel with a step and the second problem is the

double Mach reflection. Results for these problems from

Ref. [261] that demonstrate the effectiveness and

resolution characteristics of the SV method variants,

including numerical flux evaluation and effect of limit-

ers, are shown next.

For the Mach 3 wind tunnel problem it is well known

that the corner of the step is a singularity that often
Fig. 115. Density contours computed on the coarse mesh using

the Roe flux and TVD limiter. Thirty even contour lines

between 0.09 and 4.53; (a) second-order SV scheme; (b) third-

order SV scheme; (c) fourth-order SV scheme.
leads to a spurious Mach stem at the downstream

bottom wall. In the numerical test of [260] no special

treatment was used for the singularity. The effect of the
Fig. 117. Density contours computed on the coarse mesh using

the Rusanov flux and TVB limiter with M ¼ 10. Thirty even

contour lines between 0.09 and 4.53; (a) second-order SV

scheme; (b) third-order SV scheme; (c) fourth-order SV scheme.



ARTICLE IN PRESS
J.A. Ekaterinaris / Progress in Aerospace Sciences 41 (2005) 192–300290
Riemann solver and order of accuracy was tested using a

coarse mesh with 1763 triangular elements and h ¼ 1
20
.

All simulations for the wind tunnel were carried out

until t ¼ 4. The computed density contours obtained

from numerical solutions with the second-, third-, and

fourth-order accurate SV methods, using the Roe flux

and the TVD limiter are shown in Fig. 115. The same

computations with the Rusanov flux are shown in

Fig. 116. In Fig. 117 the effect of the limiter (TVD

versus TVB) is demonstrated using again the Rusanov

flux. It can be seen that the fourth-order SV performed

worse than the second- and third-order SV scheme

because many reconstructions were linear due to data
Fig. 118. Density contours computed using a third-order SV

scheme with the Rusanov flux and TVD limiter. Thirty even

contour lines between 0.09 and 4.53; (a) h ¼ 1
40
(52,476 DOFs);

(b) h ¼ 1
80
(222,876 DOFs).

Fig. 119. Three computational grids with different degrees of

refinement near the singular corner point.
limiting and the non-uniform subcell mesh produced

large errors. The Roe’s flux was found less dissipative

and produced weaker Mach stems than the Rusanov

flux. For the TVB limiter test of Fig. 117 the Mach

number was increased to M ¼ 10. The performance of

the TVB limiter was still very similar with that of the

TVD limiter except that the TVB limiter produced more

oscillations.
Fig. 120. Computed density contours with the second-order SV

scheme using the Rusanov flux and TVD limiter.

Fig. 121. Computed density contours with the third-order SV

scheme using the Rusanov flux and TVD limiter.



ARTICLE IN PRESS
J.A. Ekaterinaris / Progress in Aerospace Sciences 41 (2005) 192–300 291
Grid refinement studies performed in [260] demon-

strated (see Fig. 118) that resolution of the third-order

scheme for the medium h ¼ 1
40
and fine h ¼ 1

80
grids
Fig. 122. Density contours computed using a second-order SV

scheme with the Rusanov flux and TVD limiter. Thirty even

contours between 1.25 and 21.5. (a) h ¼ 1
30
(24,600 DOFs),

(b) h ¼ 1
60
(98,808 DOFs), (c) h ¼ 1

120
(392, 484 DOFs).

Fig. 123. Density contours computed using a third-order SV

scheme with the Rusanov flux and TVD limiter. Thirty even

contours between 1.25 and 21.5. (a) h ¼ 1
30
(49,200 DOFs),

(b) h ¼ 1
60
(197,616 DOFs), (c) h ¼ 1

120
(784,968 DOFs).
increases significantly. Even though the third-order

results were more oscillatory than the second-order

results the spurious Mach stems were weaker.

Successive grid refinement, with the meshes shown in

Fig. 119, was used to demonstrate that the singular

corner is the cause of the spurious Mach stem.

Computed density contours from the second- and

third-order accurate schemes with the Rusanov flux

and the TVD limiter are shown in Figs. 120 and 121,

respectively. It can be seen that increased grid density

weakened the spurious Mach stem and the entropy layer
Fig. 124. Close-up view of the density contours near the double

Mach stem: (a) second-order SV scheme, h ¼ 1
120

(392,384

DOFs); (b) third-order SV scheme, h ¼ 1
60
(197,616 DOFs);

(c) third-order SV scheme, h ¼ 1
120
(784,968 DOFs).
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downstream the shock reflection. Higher resolution of

shock waves and contact was obtained with the third-

order accurate scheme.

The double Mach reflection problem (see Section 4 for

the description of the problem) tests were carried out for

the Rusanov flux, the TVD limiter, and approximate

mesh sizes 1
30
, 1
60
and 1

120
. The density contours at t ¼ 0:2

for the second- and third-order SV schemes are shown in

Figs. 122 and 123, respectively. The third-order SV

scheme has much higher resolution than the second-

order scheme for complex flow structures near the

double Mach stem. Fig. 124 shows that the density

contours computed with the third-order scheme and half

the mesh size ðh ¼ 1
60
Þ display finer structures than the

computation performed with the second-order scheme

on a fine mesh with mesh size h ¼ 1
120
. The third-order

accurate computations of [260] were found to have

better resolution than the DG scheme on the same mesh

even for computations obtained with DG methods of

the same order on finer meshes.
7. Conclusions

For vortical flows without discontinuities, many

different numerical schemes can achieve high accuracy.

Centered schemes with spectral-type filters work well for

these problems. So do all other shock-capturing

methods such as schemes with explicit, characteristic-

type filters [28,36], essentially non-oscillatory (ENO)

schemes [32], weighted WENO schemes [33,34], and the

discontinuous Galerkin method. However, only the

high-order accurate shock-capturing methods, such as

WENO schemes, the DG method, and centered schemes

with characteristic-type filters, are suitable for computa-

tions of high-speed flows with shocks. Finite-difference

centered compact differentiation formulas and WENO

schemes are quite efficient computationally. In addition,

when combined with implicit time integration methods

[149,29] are suitable for the numerical solution of time-

depended high Reynolds number viscous flows. Numer-

ous applications of Sections 3 and 4 demonstrate the

potential of these methods.

In Ref. [266], additional important observations were

made regarding the efficiency with high-order accurate

schemes by examining the local errors achieved when

employing polynomial base functions or high-order

accurate stencils. These observations stem from the

study of a steady advection problem with source in one

direction. If the exact solution has a discontinuity in the

mth derivative (m ¼ 0 denoting discontinuity in the

solution), the local error in L1 norm is no better than

Oðhm
Þ, where h is the mesh size, regardless of the

polynomial basis or the stencil order being used. The

Oðhm
Þ accuracy in L1 norm is achieved by using kth

degree polynomial basis functions with kXm. In this
case, Oðhmþ1=2
Þ accuracy is obtained L2 norm and

Oðhmþ1
Þ accuracy is L1 norm. For k4m, or for regions

away from the discontinuities when kXm, Oðhkþ1
Þ

accuracy is obtained in L1, L2, and L1 norms. There-

fore, there is no advantage when a polynomial of degree

k4m is used in the vicinity of the discontinuity and for

maximal efficiency a polynomial of degree k ¼ m should

be used near the discontinuity. For a better capturing of

the discontinuity itself, locally h-refinement must be

employed. For smooth analytic solutions ðm !1Þ, on

the other hand, high degree numerical approximations

should be used with no or little reliance on local

h-refinement similar to spectral methods.

Another aspect of high-order accurate methods is

robustness. When the solution has a discontinuity in the

mth derivative, then oscillations in the vicinity of the

discontinuity appear because of the Gibbs’ phenomen-

on. Oscillations could lead to unphysical states, such as

regions with negative pressure or density, during the

course of the solution process unless care it taken with

slope limiters [38] or shock switches [60,63]. The

oscillations, which could appear in the commutated

solution for degree of accuracy kom on coarse or purely

resolved meshes, would disappear with grid refinement.

In CFD (also in many CAA) applications the governing

equations and in many cases the numerical scheme as

well is nonlinear. In these cases, inadequate resolution of

features could present serious problems, primarily

having to do with the solvability of the nonlinear system

and secondary, possibly with the unphysical nature of

the convergent solution.

The sensitivity to grid quality is another major

problem that is common even for second-order accurate

methods. Grids are generated based on a priori knowl-

edge of the solution. For example, the number of points

and stretching ratio required to resolve boundary layers,

vortical structures, and detached layers is usually

predetermined. The real power of unstructured grid

methods is their ability to adapt to complex flow

features without being constrained by considerations

such as grid structure and topology. As a result, once a

valid solution is obtained on any initial grid, it is at least

conceptually possible to adapt the grid, either through

grid refinement/coarsening and/or by moving grid

points. To date there have been a few notable efforts

[267] for relatively simple CFD problems. The real

challenge is application of anisotropic grid adaptation

for high Reynolds number complex flows. For example,

in rotorcraft and high lift applications the flow features

of interest are attached and separated boundary layers,

wake roll-ups and tip vortices, possible shocks on slats

or blade tips and interactions among all these features. It

is very likely that the grids produced by adaptation

would be highly stretched, deformed, and anisotropic. It

is a challenge for current flow solvers to achieve solution

reliability and accuracy on anisotropic adapted grids.
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Table A.1

k r j ¼ 0 j ¼ 1 j ¼ 2 j ¼ 3

1 �1 1

0 1

2 �1 3
2

�1
2

0 1
2

1
2

1 �1
2

3
2

3 �1 11
6

�7
6

1
3

0 1
3

5
6 �1

6

1 �1
6

5
6

1
3

2 1
3

�7
6

11
6

4 �1 25
12

�23
12

13
12

�1
4

0 1
4

13
12

� 5
12

1
12

1 � 1
12

7
12

7
12 � 1

12

2 1
12

� 5
12

13
12

1
4

3 �1
4

13
12

�23
12

25
1
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The ability to retain high-order accuracy on any grid is

even more difficult, but nevertheless remains a key

requirement. Several of the recently proposed high-order

methods, such as the discontinuous Galerkin finite-

element method and the spectral volume methods have

the potential to overcome problems associated with

anisotropic meshes. However, demonstration was shown

only for simple cases.

The discontinuous Galerkin (DG) and the spectral

volume (SV), which can be interpreted as a Petrov–

Galerkin method where the test and basis functions are

different, methods have the potential for grid adaptation.

In addition the discontinuous Galerkin method is well

suited for hp-type refinement and anisotropic adaptation

with hanging nodes [222,247]. Second-order accurate

discretization with the DG and SV methods are

comparable in computing cost to the finite-volume

methods. Application of TVB limiters with high-order

accurate DG discretizations is computationally intensive.

Recently, progress was achieved for efficient high-order

computation of flows with discontinuities with the

introduction of stabilization operators [222]. A major

obstacle for the application of the DG and SV methods

in large scale, high-Reynolds number aerodynamic

simulations is time step limitation that deteriorates

with the increase of the order of the method. Recent

progress in implicit time marching algorithms [210,221],

space/time DG discretizations [222], and p-type multigrid

[207] is expected to make possible high-order accurate

computations of practical aerodynamic flows. These

developments combined with the DG/VMS method,

which combines VMS modeling with the ability of the

DGmethod to obtain high accuracy in complex domains,

offer tremendous potential for the accurate simulation of

wall-bounded and non-equilibrium turbulence.
Appendix

The Lagrange interpolation polynomials are given by

PðxÞ ¼
Xk

m¼0

Uðxi�rþm�1=2Þ
Yk

l¼0
lam

x� xiþrþl�1=2

xi�rþm�1=2 � xi�rþl�1=2
.

ðA:1Þ

Subtracting Uðxi�r�1=2Þ form both sides of Eq. (A.1)

and after some algebra (see article by Shu in [158,

pp. 439–582]) obtain the values

crj ¼ Dxi�rþj

Xk

m¼jþ1

�

Pk
l¼0
lam

Qk
q¼0

qam;l

ðxiþ1=2 � xi�rþq�1=2ÞQk
l¼0
lam
ðxi�rþm�1=2 � xi�rþl�1=2Þ

ðA:2Þ
that simplifies for uniform grid to

crj ¼
Xk

m¼jþ1

Pk
l¼0
lam

Qk
q¼0

qam;l

ðr� qþ 1ÞQ
l¼0
lam
ðl �mÞ

. (A.3)

The values of the constants crj for uniform grid and

order of accuracy between k ¼ 1 and k ¼ 6 are given in

Table A.1.

From Table A.1 and Eq. (4.5) obtain for example

uiþ1=2 ¼ � 1
12

ui�1 þ
7
12

ui þ
7
12

uiþ1 �
1
12

uiþ2 þ OðDx4Þ,

uiþ1=2 ¼
49
20

uiþ1 �
71
20

uiþ2 þ
79
20

uiþ3

� 163
60

uiþ4 þ
31
30

uiþ5 �
1
6

uiþ6 þ OðDx6Þ.
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